11.5 Summary
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promised, it should be held responsible. Of course, we must not be too rigid about this
separation, since it is clearly desirable to encourage manufacturing to be flexible enocugh
te accommodate legitimate changes from sales. Chapter 15 will probe this problem in
greater detail and will give specifics on how to quote customer due dates sensibly and
derive a set of manufacturing due dates from therm.

The disparity between responsibility and authority can extend beyond the workers
into management and can be the result of subtle factors. We witnessed an example of a
particular manager who had responsibility for the operational aspects of his production
line, including throughput, quality, and cycle time. Moreover, he had full authority,
budgetary and otherwise, to take the necessary sieps (o achieve his performance targets.
However, he was unable to do so because of a lack of time to spend on operational
issues: he was also responsible for personnel issues for the workforce on the line, and
the majority of his time was taken up with these concerns. As a result, he was taking
a great deal of heat for the poor operational performance of his line. Our impression s
that this is not at all an unusval simation.

To avoid placing managers in a position in whick they are unable to deal effectively
with logistical concerns, we suggest using policies to explicitly make time for operations.
Cne approach is to designate a manager as the “operating manager” for a specific period
(e.g., & shift or day). During this time, the manager is temporarily exempted from
personnel duties and is expected to concentrate exclusively on runmng the line. The
effect will be to force the manager to appreciate the problems at an intimate level and
provide time for generating solutions. This concept is analogous to the “officer of the
deck” (OOD) policy used in navies around the world. When the OO0OD “has the con,” he
is ultimately responsible for the operation of the ship and is temporarily absolved from
all duties not directly related to this responsibility. On a ship, having a clearly defined
altimate authority at all times is essential to making critical decisions on a split-second
basis. As manufacturing practice moves toward low-WIP, short-cycle-time techniques,
having a manager with the time and focus to make real-time judgments on operating
issues will become increasingly important in factories as well.

We realize that this chapter is only a quick glance at the complex and multifaceted
manner in which hurnan beings function in manufacturing systems. We hope we have
offered enough to convince the reader that operations management is more than just
models. BEven strongly technical topics, such as scheduling, capacity planning, quality
control, and machine maintenance, involve peaple in a fundamental way. It is important
to remember that a manufacturing system consists of equipment, logic, and people.
Well-designed systems make effective use of all three components.
Beyond this fundamental observation, our main points in this chapter were these:

1. People act according to their self-interest. Certainly altruism exists and some-
times motives are subtle, but overwhelmingly, peoples’ actions are a consequence of
their real and perceived personal incentives. If these incentives induce behavior that is
counterproductive to the system, they must be changed. While we cannot give here any
kind of comprehensive treatment of the topic of motivation, we have tried to demonstrate
that simple financial incentive systems are unlikely to be sufficient,

2. People differ, Because individuals differ with regard to their talents, interests,
and desires, different systems are likely to work with different workforces. It makes no
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sense to force-fit a control system to an environment in which the workers’ abilities are
ill suited to it.

3. Champions can have powerful positive and negative influences. We seem to be
in an age when each new manufacturing management idea must be supported by a guru
of godlike stature. While such people can be powerful agents for change, they can also
make unscund ideas seem attractive. We would all probably be better off with a little
less hype and a little more plodding, incremental improvement in manrufacturing.

4, People can burn out. This is areal problem for the post-1990 era. We have jumped
on so many bandwagons that workers and managers alike are tired of the “revolution of
the month.” In the future, promoting real change in manufacturing plants is likely to
require less reliance on rhetoric and more on logic and hard work.

5. There is a difference between planning and motivating. Using optimistic capacity,
yield, or reliability data for motivational purposes may be appropriate, provided it is not
carried to extremes. But using historically unproven numbers for predictive purposes is
downright dangerous. .

6. Responsibility should be commensurate with authority. This well-known and
obvious management principle is stilt frequently violated in manufacturing practice. In
particular, as we move toward more rapid, low-WIP manufacturing styles, it will be
increasingly important to provide managers with fime for operations as part of their
authority for mecting their manufacturing responsibilities.

We hope that these simple observations will inspire the reader to think more carefully
about the human element in operations management systems. We have tried to maintain
a human perspective in Part III of this book, in which we discuss putting the factory
physics concepts into practice, and we encourage the reader to do the same,

Discussion Points

1. Comment on the following paraphrase of a statement by an hourly worker overheard in a plant
lunchroom:

Management expects us (o bust cut butts getting more efficient and reengineering the
plant. If we don't, they’ll be all over us. But if we do, we'll just downsize ourselves out
of jobs. So the best thing to do is make it ook like we're working real hard at it, but be
sure that no really big changes happen.

4. What does this statement imply about the relationship between management and labor at
that plant?
b. Does the worker have a point?
¢. How might such concerns on the part of workers be addressed as part of a program of
change?
2. Consider the following paraphrase of a statement by the owner of a small manufacturing
business:

Twenty years ago our machinists were craftsmen and knew these processes inside and out.
Today, we're lucky if they show up on a regular basis. We need to develop an antomated
system to control the process seftings on our machines, not so much to enhance quality
or keep up with the competition, but hecause the workers are no longer capable of doing
it manually.

a. What does this statement imply about the relationship between management and labor at
that plant?
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5. Does the owner have a point?
¢. What kinds of policies might management pursue to improve the effectiveness of

operators?
3. Consider the following statement:

JIT worked for Toyota and other Japanese companics because they had the champions
whe origipated it. American firms were far less successful with it because they had less
effective champions to sell the change.

a. Do you think there is a grain of truth in this statement?
b. What important differences about JIT in Japan and America does it ignore?

Study Questions

1. The popular literature on manufacturing has sometimes portrayed continual improvement as a
matter of “removing constraints.” Why are constraints sometimes a good thing in
manufacturing systems? How could removing constraints actually make things worse?

2. When dealing with a manufacturing system that is burned out by “revolutions,” what
measures can a manager use to inspire needed change?

3. Many manufacturing managers are rejuctant to use historical capacity data for future planning
because they regard it as tantamount to accepting previcus substandard performance.,
Comment on the dilemma between using historical capacity data for planning versus using
rated capacity for motivation. What reasures can a manager take to scparate planning from
motivation?

4, In Deming’s red beads example, employees have no control over their performance. ‘What
does this experiment have to do with a situation in the real world, where employees’
performance is a function both of their ability/effort and random factors? What managerial
insights can one obtain from this example?

5. Contrast MRP, Kanban, und CONWIP from a human jssues standpoint. What implications do
each of these systems have for the working environment of the employees on the factory
floor? The staff engineers responsible for generating and propagating the schedule? The
managers responsible for supervising direct lahor? To what extent are the human factors
benefits of a particular production control system specific to that system, and therefore not to
be obtained by medifying one of the other production control methods?
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Saw it on the tube
Bought it on the phone
Now you're home alone
It's a piece of crap.

I tried to plug itin

Itried to turn it on

When I got it home

It was a piece of crap.
Neil Young

12.1 Introduction

A fundamental factory physics insight is that variability plays an imporiant role in de-
termining the performance of a manufacturing system. As we observed in Chapters 8
and 9, variability can come from a variety of sources: machine failures, setups, operatot
behavior, fluctuations in product mix, and many others. A particularly important source
of variability, which can radically alter the performance of a system, is quality. Quality
problems almost always become variability problems. By the same token, variability
reduction is frequently a vehicle for quality improvement. Since quality and variability
are intimately linked, we conclude Part 11 with an overview of this critical issue.’

12.1.1 The Decade of Quality

The 1980s were the decade of quality in America. Scores of books were published on
the subject, thousands of employees went through short courses and other training pro-
grams, and “quality-speak” entered the standard language of corporate America. In 1987,
the International Standards Organization established the I1SO 9000 Series of quality

I'We have deliberately vsed the title Total Quality Manufacturing in place of the more conventional Yotal
Quatity Management (TOM) in recognition that we are covering only the subset of TOM that relates to
operations rmanagement.
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standards. In the same year, the Malcolm Baldrige National Quality Award was created
by an act of the U.S. Congress.’

The concept of quality and the methods for its control, assurance, and management
were not new in the 1980s. Quality control as a discipline dates back at least to 1924 when
Walter A. Shewhart of Western Electric’s Bell Telephone Laboratories first introduced
process control charts. Shewhart published the first important text on quality in 1931.
Armand Feigenbaum coined the term total quality control in a 1956 paper and used this
as the title of a 1961 revision of his 1951 book, Quality Control.

But while the terms and tools of guality have been around for a long time, it was
not until the 1980s that American industry really took notice of the strategic potential of
quality. Undoubtedly, this interest was stimulated in large part by the dramatic increase
in the quality of Japanese products during the 1970s and 1980s, much in the same way
that American interest in inventory reduction was prompted by Japanese JIT success
stories.

Has all the talk about quality led to improvements? Probably so, although it is
difficult to measure them since, as we will discuss in this chapter, quality is a broad term
that can be interpreted in many ways. Nevertheless, some surveys have suggested that
consumers viewed the overall quality of American products as declining during the 1580s
(Garvin 1988). The American Customer Satisfaction Index (ACSID), an overall gauge of
customer perceptions of quality that has been tracked quarterly since 1994, also showed
declining satisfaction in the 1990s. Whether these declines are due to rising customer
expectations, ongoing management problems, or both, it seems ¢lear that quality remains
a significant challenge for the future.

12.1.2 A Quality Anecdote

To set the stage, we introduce the quality issue from a personal perspective. In 1991,
one of the authors purchased a kitchen range that managed to present an astonishing
array of quality problems. First, for styling purposes, the stove came with light-colored
porcelain-coated steel cooktop grates. Afteronlya few days of use, the porcelain cracked
and chipped off, leaving a rough, anattractive appearance. When the author called the
service department (and friends with similar stoves), he found that every single stove
of this model suffered from the same defect—a 100 percent failure rate! So much for
inspection and quality assurance!

The customer service department was reasonably polite and sent replacement grates,
but these lasted no longer than the originals, so the author continued to complain. After
three or four replacements (including one in which the service department sent two sets
with the recommendation that we use one set and save the other to put on the stove when
entertaining guests!), the manufacturer changed suppliers and sent dark-colored, more
durable grates. So much for quality design and styling!

As the grate story was evolving, the stove suffered from a succession of other
problems. For instance, the pilotless ignition feature would not shut off after the burners
lit, causing a loud clicking noise whenever the stove was in use. Repair people came to
fix this problem no fewer than eight times during the first year of use (i.e., the warranty
period). During one of these visits, the repairman admitted that he really had no idea
of how to adjust the stove because he had never received specifications for this model
from the manufacturer and was therefore just replacing parts and hoping for the best. 50
much for service after the sale and for doing things right the first time!

2Tellingly, the Japanese Union of Scientists and Engineers {JUSE) had already established its major
quality award, the Denung Prize, in honor of American W. Edwards Deming, in 1951,
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At the end of the first year, the service department called to sell the author an
extended warranty and actually said that because the stove was so unreliable (they used
amuch less polite term than unreliable) the extended warranty would be a good deal for
us. So much for standing behind your product, and for customer-driven quality!

(By the way, as this book was being written, the oven door fell off. WE DID NOT
MAKE ANY OF THIS UP!)

12.1.3 The Status of Quality

We do not mean to imply that this story sums up the quality level of American manufac-
turing. Butitis fascinating (and depressing) that a company in the 1990s could be in such
glaring violation of virtually every principle of good quality management. Furthermore,
we suspect that this is not an isolated example. (We have more personal experiences,
but will not subject the reader to them.) An exercise we are fond of in our executive
courses is to challenge the participants to think about quality not from the viewpoint
of a manufacturing manager, educator, or professional, but from that of a consumer. A
dishearteningly high fraction report that they have rarely had their expectations for a
product or service exceeded, but have frequently been disappointed.

Evidently, there is still a considerable gap between the rhetoric and the reality of
quality. Thus, while it is convenient to speak, as we did at the beginning of the book,
as if cost was the dimension of competition in the 1970s, quality was the dimension of
competition in the 1980s, and speed is the dimension of competition in the 1990s, one
should not take this apothegm literally. Quality (and cost, for that matter) will remain
an important determinant of competitiveness well beyond the 1990s.

What can an individual firm do? The answer is, plenty. There is not a plant in
the world that could not improve its products, processes, or systems; get closer to its
customers; or better understand the influence of quality on its business. Furthermore,
there is a vast literature to consult for ideas. Although the quality literature, like the
JIT literature, contains an overabundance of imprecise romantic rhetoric, it offers much
useful guidance as well. The literaturc on quality can be divided into two categories,
total quality management (TQM), which focuses on quality in qualitative management
terms {(e.g., fostering an overall environment supportive of quality improvement), and
statlstical quality control (SQC), which focuses on quality in quantitative engineering
terms {(e.g., measuring quality and assuring compliance with specifications). Both views
are needed 1o formulate an effective quality improvement program. All TQM with no
SQC produces talk without substance, while all SQC with no TQM produces numbers
without purpose.

A strong representative from the TQM literature is the work of Garvin (1988), on
which some of the following discussion is based. Garvin's book offers an insightful
perspective of what quality is and how it affects the firm. Other widely read TQM books
include those by Crosby {1979, 1984), Deming (1986), and Juran (1989, 1992). In the
SQC field there are many solid works, most of which contain a brief introductory section
on TQM; these include those by Banks (1989); DeVor, Chang, and Sutherland (1992);
Gitlow et al. (1989); Montgomery (1991); and Thompson and Koronacki (1993); among
others. Some books, notably Juran's Quality Control Handbook (1988), address both
the TQM and SQC perspectives.

We cannot hope to provide the depth and breadth of these references in this brief
chapter. What we can do is ta focus on how quality fits into the overall picture of plant
operations management. The framework of factory physics allows us to synthesize the
perspectives of quality and operations into elements of the same picture. We leave the
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reader to consult references like those mentioned, to flesh out the specifics of quality
management pl’OCCdUI‘eS.

12.2 Views of Quality

12.2.1 Genera! Definitions

What is quality? This question is a logical place to start our discussion. Garvin (1988)
offers five definitions of quality, which we summarize as follows:

1. Transcendent. Quality refers to an “innate excellence,” which is not a specific
attribute of either the product or the customer, but is a third entity altogether. This boils
down to the “I can’t define it, but I know it when I see it” view of quality.

2. Product-based. Quality is a function of the attributes of the product (the quality
of a rug is determined by the number of knots per square inch, or the quality of an
automobile bumper is determined by the dollars of damage caused by a five-mile-per
hour crash). This is something of a “more is better” view of quality (more knots, more
crashworthiness, etc.).

3. User-based. Quality is determined by how well customer preferences are satis-
fied; thus, it is a function of whatever the customer values (features, durability, aesthetic
appeal, and so on). In essence, this is the “beauty is in the eye of the beholder” view of
quality.

4. Manufacturing-based. Quality is equated with conformance to specifications
(e.g., is within dimensional tolerances, or achieves stated performance standards). Be-
cause this definition of quality directly refers to the processes for making products, it is
closely related to the “do it right the first time” view of quality.

5. Value-based. Quality is jointly determined by the performance or conformance
of the product and the price {e.g.. 2 $1,000 compact disk is not high quality, regardless of
performance, because few would find it worth the price). This is a “getting your money’s
worth” or “affordable excellence” view of quality.

These definitions bring up two points. First, quality is a multifaceted concept that
does not easily reduce to simple numetical measures. We need a framework within which
to evaluate quality policies, just as we needed one (i.e., factory physics) for evaluating
operations management policies. Indeed, as we will discuss, the two frameworks are
closely related, perhaps as two facets of the larger science of manufacturing to which
we referred in Chapter 6.

Second, the definitions are heavily product-oriented. This is the case with most
of the TQM literature and is a function of the principle that quality must ultimately
be “customer-driven.” Since what the customer sees is the product, quality must be
measured in product terms. However, the quality of the product as seen by the customer
is ultimately determined by a number of process-oriented factors, such as design of the
product, control of the manufacturing operations, involvement of labor and management
in overseeing the process. customer service after the sale, and so on.

12.2.2 Internal versus External Quality

To better understand the relationship between product-oriented and process-oriented
quality, we find it useful to draw the following distinction between internal quality and
external quality:
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1. Internal quality refers to conformance with quality specifications inside the
plant and is closely related to the manufacturing-based definition of quality. It
is typically monitored through direct product measures such as serap and
rework rates and indirect process measures such as pressure (in an injection
molding machine) and temperature (in a plating bath).

2. External quality refers to how the customer views the product and may be
interpreted by using the transcendent, product-based, user-based, or
value-based definition, or a combination of them. It can be monitored via direct
measures of customer satisfaction, such as return rate, and indirect indications
of customer satisfaction derived from sampling, inspection, field service data,
customer surveys, and so on.

To achieve high external quality, one must translate customer concerns Lo measures
and controls for internal quality. Thus, from the perspective of a manufacturing man-
ager, the links between internal and external quality are key to the development of a
strategically effective quatity program. The following are some of the more important
ways in which quality inside the plant is linked to the quality that results in customer
satisfactton,

1. Error prevention. If fewer errors are made in the plant, fewer defects are likely
to stip through the inspection process and reach the customer. Therefore, to the extent
that quality as perceived by the customer is determined by freedom frorn defects, high
“guality at the source” in the plant will engender high customer-driven quality.

2. Inspection improvement. If fewer defects are produced during the manufacturing
process, then quality assurance will require inspection to detect and reject or correct
fewer items. This tends to reduce pressure on quality personnel to “let things slide”—
in other words, relax quality standards in the name of getting product out the door.?
Furthermore, the less time spent reworking or replacing defective parts, the more time
people have for tracing quality problems to the root causes. Ideally, the net effect will
be an upward quality spiral, in which error prevention and error detection both improve
over time.

3. Environment enhancement. Even if quality problems in the field cannot be traced
directly to plant-level defects, high internal quality and external quality may still be
linked.* Both types of quality are promoted by the same environmental factors (e.g., sup-
portive management attitudes, tangible rewards for improvements, sophisticated tracking
and control systems, and effective training). An organization that has fostered the right
attitudes and tools inside the plant is likely to be able to do the same outside the plant.

In short, understanding quality means looking to the customer. Delivering it entails
looking to manufacturing.® For the purposes of this chapter we will assume that the
concerns of the customer have been understood and translated to quality specifications
foruse by the plant. Our focus will be on the relationship between quality and operations,
and particularly how the two can work together as parts of a continual improvement
process for the plant.

3Crosby (1979, 41) relates a story in which manufacturing viewed inspection in an adversarial mode,
protesting each rejected part as if quality inspectors were personally trying to sabotage the plant.

4Garvin {1988, 129) offers the example of the compressor on an air conditioner failing due to corrosion
caused by excess moisture seeping into the unis, Such a problem would not show up in any reasonable “bum
in” petiod and therefore would most likely be undetected as a defect at the plant level.

SHere we are referring to “big M™ manufacturing, including product design, production, and field service.
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12.3 Statistical Quality Control

Statistical quality control (SQC) generally focuses on manufacturing quality, as mea-
sured by conformance to specifications. The ultimate objective of SQC is the systematic
reduction of variability in key quality measures. For instance, size, weight, smoothness,
strength, color, and speed (e.g., of delivery) are all measurable attributes that can be
used to characterize the quality of manufactaring processes. By working to assure that
these measures are tightly controlled within desired bounds, SQU functions directly at
the interface between operations and quality.

12.3.1 SQC Approaches

There are three major classes of tools used in SQC to ensure quality:

1. Acceptance sampling. Products are inspected to determine whether they
conform to quality specifications. In some situations, 100 percent inspection is
used, while in others some form of statistical sampling is substituted. Sampling
may be an option chosen for cost reasons or an absolute necessity (¢.g., when
inspection is destructive).

2. Process control. Processes are continuously monitored with respect to both
mean and variability of performance to determine when special problems occur
or when the process has gone out of control.

3. Design of experiments. Causes of quality problems are traced through
specifically targeted experiments. The basic idea is to systematically vary
controllable variables to determine their effect on quality measures. A host of
statistical tools (e.g., block designs, factorial designs, nested designs, response
surface analysis, and Taguchi methods) have been developed for efficiently
correlating controls with outputs and optimizing processes.

Typically, as an organization matures, it relics less on after-the-fact acceptance sampling
and more on at-the-source process control and continual-improvement-oriented design
of experiments.

Obviousty, entire books have been written on each of these subjects, so detailed
coverage of them is beyond the scope of this chapter. However, because process control
deals so specifically with the interface between quality and variability, we offer an
overview of the basic concepts here.

12.3.2 Statistical Process Control

Statistical process control {SPC) begins with a measurable quality attribute—for exarn-
ple, the diameter of a hole in a cast steel part. Regardless of howtightly controlled the
casting process is, there will always be a certain amount of variability in this diameter. If
it is relatively small and due to essentially uncontrollable sources, then we call it natural
variability. A process that is operating stably within its natural variation is said to be in
statistical control, Larger sources of variability that can potentially be traced to their
causes are called assignable-cause variation, A process subject to assignable-cause
variation is said to be out of control. The fundamental challenge of SPC is to separate
assignable-cause variation from natural variation. Because we generally observe directly
only the quality attribute itself, but not the causes of variation, we need statistics to
accomplish this.
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Figure 12.1
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To illustrate the basic principles behind SPC, let us consider the example of control-
ling the diameter of a hole in a steel part made using a sand casting process. Suppose that
the desired nominal diameter is 10 millimeters and we observe a casting with a diameter
of 10.1 millimeters. Can we conclude that the casting process is out of control? The
answer is, of course, “It depends.” It may be that a deviation of 0.1 millimeter is well
within natural variation levels. If this were the case and we were to adjust the process
(e.g., by altering the sand, steel, or mold) in an attempt to correct the deviation, in all
likelihood we would make it worse. The reason is that adjusting a process in response to
randormn noise increases its variability (see Deming 1982, 327, for discussion of a funnel
experiment that illustrates this point). Hence, to ensure that adjustments are made only
in response to assignable-cause variation, we must characterize the natural variation,

In our example, suppose we have measured a number of castings and have deter-
mined that the mean diarmeter can be controlled tobe ¢t = 10 millimeters and the standard
deviation of the diameter is ¢ = 0.025 millimeter. Further suppose that every two hours
we take a random sample of five castings, measure their hole diameters, compute the
average (which we call x), and plot it on a chart like that shown in Figure 12.1. From

basic statistics, we know that ¥ is itself a random variable which has standard deviation
a

Tz = 7 (12.1)
where # is the number in the sample: # = § in this example.®
The basic idea behind control charts is very similar to hypothesis testing. Our null
hypothesis is that the process is in control; that is, the samples are coming from a process
with mean w4 and standard deviation o, To avoid concluding that the process is out of
control when it is not (i.e., type 1 error), we set a stringent standard for designating
deviations as “‘assignable cause.” Standard convention is to flag points that lie more than
three standard deviations above or below the mean. We do this by specifying lower and
upper control limits as follows:

LCL = p — 30% {12.2)
UCL = p + 30; (12.3)

SNote that this is another example of variability pooling. Choosing n > 1 tightens our estimate of X and
therefore reduces our chances of reacting to random noise in the syster.
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If we observe a sample mean outside the range between LCL and UCL, then this ob-
servation is designated as assignable-cause variation. In the casting example charted in
Figure 12.1, such a deviation occurred at sample 22. This might have been caused by
defective inputs (e.g., steel or sand), machine problems (e.g., in the mold, the packing
process, the pouring process), or operator error. SPC does not tell us why the deviation
occurred—only that it is sufficiently unusual to warrant further investigation.

Other criteria besides points outside the control limits are sometimes used to signal
out-of-control conditions. For instance, the occurrence of several points in a row above
(or below) the target mean is frequently used to spot a potential shift in the process
mean. In Figure 12.1, sampte 37 is out of control. But uniike the out-of-control point at
sample 22, this point is accompanied by an unusual ran of above-average observations
in samples 35 to 40. This is strong evidence that the cause of the problem is not unique
to sample 37, but instead is due to something in the casting process itself that has caused
the mean diameter to increase. Other criteria based on multiple samples, such as rules
that look for trends (e.g.. high followed by low followed by high again), are also used
with control charts to spot assignable-cause variation.

Tt is important to note that because a process is in statistical control does not neces-
sarily mean that it is capable (i.e., able to meet process specifications with regularity).
For instance, suppose in our casting example that for reasons of functionality we require
the hole diameter to be between a lower specification level (LSL) and an upper spec-
ification level (USL). Whether or not the process is capable of achieving these levels
depends on how they compare with the lower and upper natural tolerance limits,
which are defined as

LNTL = g - 3o (12.4)
UNTL = st + 30 (12.5)

Note that LNTL and UNTL are limits on the diameter of individual holes, while the LCL
and UCL are limits on the average diameter of samples. Moreover, note that LNTL and
UNTL are internally determined by the process itself, while LSL and USL are externally
determined by performance requirements.

Let us consider some illustrative cases. The natural tolerance limits are given by
LNTL = gt ~ 3¢ = 10 = 3(0.025) = 9.925 and LNTL = p + 30 = 10+ 3(0.025} =
10.075. Suppose that the specification fevels are given by LSL = LSL1 = 9.975 and
USL = USL1 = 10.025. It is apparent from Figure 12.2 that the casting process will
produce a large fraction of nonconforming parts. To be precise, if hole diameters are
normally distributed, then

0.975 < X < 10.025) = P 9.975 - 10 7 < 10.025 - 10
= < = —_— —
PO.975 < X < 10.02) 0.025 —  — 0025
=P(-1<Z<)=d(-1+1-21}
=0.1587 + 1 —0.8413
=0.3174

This means that almost 32 percent will fail to meet specification Jevels.

Suppose instead that the specification levels are given by LSL = L.SL2 = 9.875 and
USL = USL2 = 10.125. Since the natural tolerance limits lie well within this range, we
would expect very few nonconforming castings. Indeed, repeating the calculation above
for these limits shows that the fraction of nonconforming parts will be 0.00000037.
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FiGure 12.2
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A measure of capability is the process capability index, which is defined as
Zmin

Cot = =3 (12.6)
where zmin = min I_ZLSLv ZUSLI (127)
LSL — u
and ZigL = — (12.8)
USL -
Zyn = b # (12.9)

The minimum acceptable value of Cp; is generally considered to be one. Note that in the
above examples, Cpx = 1/3 for (LSL1, USL1), but Cp = 5/3 for (LSL2, USL2). Note
that € is sensitive to both variability (¢') and asymmetry (i.e., a process mean that is
not centered between USL and LSL). Hence, it gives us a simple quantitative measure
of how capable a process is of meeting its performance specifications.

Of course, a host of details needs to be addressed to implement an effective SPC
chart. We have glossed over the original estimates of i and o; in practice, there are a
variety of ways to collect these from observable data. We also need to select the sample
size n to be large enough to prevent reacting to random fluctuations but not so large
that it masks assignable-cause variation. The frequency with which we sample must be
chosen to balance the cost of sampling with the sensitivity of the monitoring.

12.3.3 SPC Extensions

The ¥ chart discussed is only one type of SPC chart. Many variations have been proposed
to meet the needs of a wide variety of quality assurance situations, A few that are
particularly useful in manufacturing management include these:
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1. Range (R charts). An x chart requires process varability (that is, o) to be in
control in order for the control limits to be valid. Therefore, it 1s common to monitor this
variability by charting the range of the samples. If x,, x2, ..., x, are the measurements
(e.g., hole diameters) in a sample of size n, then the range is the difference between the
largest and smallest observations

R = Xmax — Xmin (12.]0)

Each sample yields a range, which can be plotted on a chart. Using past data to estimate
the mean and standard deviation of R, denoted by R and org, we can set the control limits
for the R chart as

LCL = R ~ 30& (12.11)
UCL = R + 3oz {(12.12)

If the R chart does not indicate out-of-control situations, then this is a sign that the
variability in the process is sufficiently stable to apply an X chart. Often, X and R charts
are tracked simultaneously to watch for changes in either the mean or the variance of the
underlying process.

2. Fraction nonconforming (p charts). Analtermativetocharting a physical measure,
as we do in an ¥ chart, is to track the fraction of items in periodic samples that fail to meet
quality standards. Note that these standards could be quantitative (e.g., a hole diameter
is within specified bounds) or qualitative (e.g., a wine is approved by a taster). If each
item independently has probability p of being defective, then the variance of the fraction
of nonconforming items in a sample of size # is given by p(1 — p)/n. Therefore, if we
estimate the fraction of nonconforming items from past data, we can express the control

lirnits for the p chart as
l —
LCL=p—3‘/£(—;I—Ez : (12.13)
I —
UCL = p+3‘/££7-p—) (12.14)

3. Nonguality applications. The basic control chart procedure can be used to track
almost any process subject to variability. For example, we describe a procedure for
statistical throughput control in Chapter 14, which monitors the output from a process in
order to determine whether it is on track to attain a specified production quota. Another
nonquality application of control charts is in due date quoting, which we discuss in
Chapter 15, The basic idea is to attach a safety lead time to the estimated cycle time and
then track customer service (e.g., as percentage delivered on time). If the system goes
out of control, then this is a signal to adjust the safety lead time.

The power and flexibility of controi charts make them exiremely useful in monitoring
all sorts of processes where variability is present. Since, as we have stressed repeatedly
in this book, virtually all manufacturing processes involve variability, SPC techniques
are a fundamental part of the tool kit of the modern manufacturing manager.

12.4 Quality and Operations

Closely related to variability as a link between quality and operations is cost. However,
there is some disagreement about just how this link works. Here are two distinct views:
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1. Cost increases with guality. This is the traditiona! industrial engineering view,
which holds that achieving higher external quality requires more intense
inspection, more rejects, and more expensive materials and processes. Since
customers’ willingness to pay for additional quality diminishes with the level of
quality, this view leads to the “optimal defect level” arguments common to
industrial engineering textbooks in the past.

2. Cost decreases with guality. This is the more recent TQM view, espoused using
phrases such as guality is free (Crosby 1979) or the hidden factory; it holds that
the material and labor savings from doing things right the first time more than
offset the cost of the quality improvements. This view supperts the zero-defects
and continval-improvement goals of JIT.

Neither view is universally correct. If improving quality of a particular product
means replacing a copper component with a gold one, then cost does increase with
quality, Where this is the case, it makes sense to ask whether the market is willing to pay
for, or will even notice, the improvement. On the other hand, if quality improvement
is a matter of shifting some responsibility for inspection from end-of-line testing to
individual machine operators, it is entirely possible that the reduction in rework, scrap,
and inspection costs will more than offset the implementation cost. Ultamately, what
matters is which view is appropriate for assessing the costs and consequences of a specific
quality improvement. This is crucial for deciding which policies should be pursued while
making continual improvements, and which should be tempered by the market.

In the next discussion and examples, we rely on the factory physics framework to
evaluate the impacts of quality on operations and the impacts of operations on gual-
ity. Our intent is not so much to provide specific numerical estimates of the cost of
quality—the range of situations that arise in industry is too varied to permit comprehen-
sive treatment of this nature—but rather to broaden and extend the intuition we developed
for the behavior of manufacturing systéms in Part I to incorporate quality considerations.

12.4.1 Quality Supporis Operations

In Chapter 9 we presented two manufacturing laws that are central to understanding the
impact of quality on plant operations, the variability law and the utilization law. These
can be paraphrased as follows:

1. Vanability causes congestion.
2. Congestion increascs nonlincarly with utilization.

In practice, quality problems are one of the largest and most common causes of
variability. Additionally, by causing work ta be done over (either as rework or as re-
placements for scrapped parts), quality problems often end up increasing the utilization
of workstations. By affecting both variability and capacity, quality problems can have
extreme operational consequences.

The Effect of Rework on a Single Machine. To get a feel for how quality affects
utilization and variabitity, let us consider a simple single-machine example. The machine
receives parts at a rate of one every three minutes. Processing times have a mean and
standard deviation of o and oy minute, respectively, so that the CV of the natural process
timeis co = 09/ fo. However, with probability p, a given partis defective. We assume that
the quality check is integral to the processing, and therefore whether the part is defective
is immediately known upon its completion. If it is defective, it must be reworked, which
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requires another processing titne with mean #; and standard deviation oy and again has
probability p of failing to produce a good part. The machine continues reworking the
part until a good one is produced. We define the total time it takes to produce a good
part to be the effective processing time.

Letting T, represent the {random) effective processing time of a part, we can compute
the mean #,, variance o, and squared coefficient of variation (SCV) ¢Z of this time, as
well as the utilization of the machine u, as follows:

[0}
t. = E|T, =
= (12.15)
2 2
02 = Var(Ty = 0 4 P _ 12.16
YT i-p  (-pp (1210
a? (0= plag + ptd
2= = ”?‘1‘.—_"_” =l + p(1—cd) (12.17)
I 1]
" fo 12.18
H= —-f, = ——
3= 30 ) (12.18)

We can draw the following conclusions from this example:

1. Utilization increases nonlinearly with rework rate. This occurs because the mean
time to process a job increases with the expected number of passes, while the arrival rate
of new jobs remains constant, At some point, the added workload due 0 rework will
overwhelm the station. In this example, Equation (12.18) shows that for p > 1 — £o/3,
utilization exceeds one, indicating that the system does not have enough capacity to keep
up with both new arrivals and rework jobs over the long run.

2. Variance of process time, given by o2, increases with rework rute. The reason,
of course, is that the more likely a job is to make multiple passes through the machine,
the more unpredictable its corpletion time becomes.

3. Variability of process time, as measured by the SCV, may increase or decrease
with rework rate, depending on the natural variability of the process. Although both
the variance and the mean of the effective process time always increase with the rework
rate, the variance does not always increase faster than the mean. Hence the SCV, which
is the ratio of vasiance to mean, can increase or decrease. We can see from Equation
(12.17) that ¢ increases in p if ¢ < 1, decreases in p if ¢% > 1, and is constant in p if
¢ = 1. The intuition behind this is that the effects of variability pooling (which happens
when we sum the process times of repeated passes) become large enough when ¢ > 1
1o cause the SCV of effective process times to decrease in p.

We can use these specific results for a single machine with rework t© motivale some
general observations about the effect of rework on the ¢ycle time and lead time of a
process. Since both the mean and the variance of effective process time increase with
rework rate, we can invoke the lead time law of Chapter 9 to conclude that the lead time
required to achieve a given service level also increases the rework rate.

The effect of rework on cycle time is not so obvious, however. The fact that the SCv
of effective process time can go down when rework increases, may give the impression
that rework might actually reduce cycle time. But this is not the case. The reason is that
increasing rework increases utilization, which 1s a first-order effect on cycle time that
outweighs the second-order effect from a possible reduction in variability. Hence, even
in processes with high natural variability, increasing rework will inflate the mean cycle
time. Moreover, because it also increases the variance of total processing time per job
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Ficure 12.3

Cycle time as a function of
rework rate
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and the variance of the time to wait in queue, increasing rework also inflates the standard
deviation of cycle ume. These cycle time effects represent general observations about
the impact of rework, as we summarize in the following manufacturing law.

Law (Rework): For a given throughput level, rework increases both the mean and
standard deviation of the cycle time of a process.

To give an illustration of this law. suppose the previously mentioned station is fed by
a moderately variable arrival process (that is, ¢, = 1} but has deterministic processing
times such that fp = 1 and ¢ = 0. Then, using Kingman's mede! of a workstation
introduced in Chapter 8, the cycle time at the station can be expressed as a function of
p as

ci—}—ci
CT=—_"“‘2 1_“r(+re
_Jxp LA =p)) 1 1

2 -3 =-pnl=-p 1-p
Figure 12.3 plots cycle time versus rework rate. This plot shows that cycle time grows
nonlinearly toward infinity as p approaches 2/3, the point at which rework reduces the
effective capacity of the system below the arrival rate.

Effect of Rework on a CONWIP Line. Of course, station level measures such as
utilization, variability, and cycle time are only indirect measures; what we really care
about is the throughput, WIP. and cycle time of a line. To illustrate the rework law ina
line, consider the CONWIP line depicted in Figure 12.4. Processing times are two-thirds
hour for machines 1, 2, and 4 and one hour for machine 3 (the bottleneck). All processing
times are determinisec (that is, 2 = 0). However, machine 2 is subject to rework. As
in the previous example, we assume that each job that is processed must be reprocessed
with probability p. Hence, as in the previous example, the mean effective processing
time on machine 2 is given by

Loy = 23
L—p

We assume that the line has unlimited raw materials, so the only source of variability is
rework.

Mean cycle time
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A CONWIP line with
rework

FiGURE 12.5

Throughput versus WIP
for different rework rates

FiGURE 12.6

Cycle time versus WIP for
different rework rates
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Because even this simple line is too complex to permit convenient analysis (the
single-machine example was messy enough!), we turn to computer simulation to estimate
the performance measures for various values of p and different WIP levels. Figures 12.5
and 12.6 summarize our simulation results,

When p = 0 (no rework), the system behaves as the best case we studied in Chap-
ter 7. Thus, we can apply the formulas derived there to characterize the throughput-
versus-WIP and cycle-time-versus-WIP curves. Note that without rework, the bottleneck
rate ry is one job per hour, and the raw process time T is r; 7y = 3 hours. Hence, the
critical WIP level is 3 jobs. At this WIP level, maximum throughput (1 job per hour)
and minimum cycle time {three hours) are attaimed.

When p = 1/3, the mean effective process time on machine 2 is ¢, (2} = 1, the bot-
tleneck rate. Thus, ry is not changed, but T; increases to 3.33 hours. This means that as
WIP approaches infinity, full throughput of one job per hour will be attained. Qur simu-
lation indicates that virtually full throughput is attained at a WIP level of about 10 jobs—
more than three times the WIP level required in the no-rework case, At a WIP level of
10 jobs, the average cycle time is roughly 10 hours—also three times the ideal level of the
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FiGuURE 12.7
Standard deviation of

cycle time versus WIP for
different rework rates

Part If  Factory Physics

no-rework case. The implication here is that the primary effect of rework when p = 1/3
is to transform a line that behaved as the best case to one approaching the practical worst
case. This illustrates the rework law in action with regard to the mean cycle time.

When p = 1/2, the mean effective process time on machine 2 is £,(2) = 4/3, which
makes it the bottleneck. Thus, even with infinite WIF, we cannet achieve throughput
above r, = 3/4 job per hour. As expected, Figure 12.5 shows substantially reduced
throughput at all WIP levels. Figure 12.6 shows that cycle times are longer, as a conse-
guence of the reduced capacity at machine 2, at all WIP levels. Moreover, because the
bottleneck rate has been decreased, the cycle time curve increases with WIP at a faster
rate than in the previous two cases,

The simulation model enabies us to keep track of other line statistics. Of particular
interest is the standard deviation of cycle time. Recall that the lead time law implies
that if we quote customer lead times to achieve a specified service level (probability of
on-time delivery), then lead times are an increasing function of both average cycle time
and the standard deviation of cycle time. Larger standard deviation of cycle time means
we will have to quote longer lead times, and consequently must hold items in finished
goods inventory longer, to compensate for the variable production rate. As Figure 12.7
shows, the standard deviation of cycle time increases in the rework rate. Moreover, it
increases in the WIP level (as there is more WIP in the line to cause random queneing
delays at the stations). Since, as we noted, rework requires additional WIP in the line
to achieve a given throughput level, this effect tends to aggravate further the cycle time
variability problem. This is an iliustration of the rework law with regard to variance of
cycle time.

The results of Figures 12.5, 12.6, and 12.7 imply the following ahout the operations
and cost impacts of quality problems.

1. Throughput effects. If the rework is high enough 10 cause a resource to become a
bottleneck (or, even worse, the rework problem is on the bottleneck resource), it can sub-
stantially alter the capacity of the line. Where this is the case, a quality improvement can
facilitate an increase in throughput. The increased revenue from such an improvement
can vastly exceed the cost of improving quality in the line.

2. WIP effects. Rework on a nonbottleneck resource, even one that has plenty of
spare capacity, increases variability in the line, thereby requiring higher WP (and cycle
time) to attain a given level of throughput. Thus, reductions in rework can facilitate
reductions in WIP. Although the cost savings from such a change are not likely to be
as large as the revenue enhancement from a capacity increase, they can be significant
relative to the cost of achieving the improvement.

E 14

) ’,

¥ 12k L

%‘ 10 .—"’

8 7

g 8- o — =173
% - ol —p=12
-}

3

(=] [ Y o e
T

U T Y Y P [
01 234567 8 910111213141516




Chapter 12 Toral Qualiry Manufacturing 395

3. Lead time effects. By decreasing capacity and increasing variability, rework
problems necessitate additional W1P in the line and hence lead to longer average cycle
times. These problems alsc increase the variability of cycle times and hence lead to either
longer quoted lead times or poorer service to the customer. The competitive advantage
of shorter lead times and more reliable detivery, achieved via a reduction in rework, is
difficult to guantify precisely but can be of substantial strategic importance.

Further Observations. We conclude our discussion on the operations impacts of
quality problems with some observations that go beyond the preceding examples.

To begin, we noie that rthe longer the rework loop, the more pronounced the conse-
gquences. In the two examples above, we represented rework as a second pass through
a single machine. In practice, rework is frequently much more involved than this. A
defective part may have to locp back through several stations in the line in order to be
corrected. When this is the case, rework affects the capacity and variability of effective
processing time on several stations. Additionally, because each pass through the rework
loop adds even more time than in the single-machine rework loop case, the effect on the
standard deviation of cycle time tends to be larger. As a result, the consequences of the
rework law become even mote pronounced as the length of the rework loop grows.

Because rework has such a disruptive effect on a production line, manufacturing
managers are frequently tempted to set up separate rework lines. Such an approach
does prevent defective parts from sapping capacity and inflating variability in the main
line. However, it does this by installing extra capacity somewhere else, which costs
money, takes up space, and does little to eliminate the inflation of the mean and standard
deviation of cycle time caused by rework. Even worse, such an approach can serve (0
sweep quality problems under the rug. Shunting defective parts to a separate line makes
them someone else’s responsibility, Making a line responsible for cofrecting its own
problems fosters greater awareness of the causes and effects of quality problems. If such
awareness can lead to quicker detection of problems, it can shorten the rework loop and
mitigate the consequences. If it can lead to ways to avoid the defects in the first place,
then truly major improvements can be achieved. Consequently, despite the short-term
appeal of separate rework lines, it is probably better in the long run to avoid them and
strive for more fundamental quality improvements.

In many manufacturing environments, internal quality problems lead 1o scrap—
that is, yield loss—rather than rework, either because the defect cannot be corrected or
because it is not economical to do so. Thus, it is important to point out that scrap has
similar effects to rework. From an operations standpoint, scrapped parts are essentially
identical to reworked parts that must be processed again from the beginning of the line.
In this sense, scrap is the most extreme form of rework and therefore has the same effects
we observed for rework, onfy more s0.

A difference between scrap and rework, however, lies in the method used to com-
pensate. While separate lines can be used for rework, they make no sense as a remedy
for scrap. Instead, most manufacturing systems perform some form of job size inflation
as protection against yield loss. (We first discussed this approach in Chapter 3in the
context of MRP but will review it again here in the context of quality and operations.)
The most obvious approach is to divide the desired quantity by the expected yield rate.
For example, if we have an order for 90 parts and the yield rate is 90 percent (i.e., a 10
percent scrap rate), then we could release

% 100
09

units. Then if 10 percent are lost 10 scrap, we will have 90 good parts to ship to the
customer.
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This approach would be fine if the scrap rate were truly a deterministic constant
(i.e., we always lose 10 percent). But in virtually all real situations, the scrap rate for a
given job is a random quantity; it might range from 0 to 100 percent. When this is the
case, it is not at all clear that inflating by the expected yield rate is the best approach. For
instance, in the previous example, suppose the expected scrap rate is 90 percent, but what
really happens is that 90 percent of the time the yield for a given job is 100 percent (no
yield loss) and the other 10 percent of the time it is 0 percent (catastrophic yield loss).
If we inflate by dividing the amount demanded by the customer by 0.9, then 90 percent
of the time we will wind up with excess and the other 10 percent of the time we will be
short. In this extreme case, job inflation does not improve customer service at all!

When toe littie good product finishes to fill an order, we must start additional parts
and wait for them to finish before we can ship the entire amount to the customer. That
is, it is similar to a rework loop that encompasses the entire line. Unless we have built
in substantial lead time to the customer, this is likely to result in a late delivery. The
costs to the firm are the (hard to quantify) cost of lost customer goodwill and the cost of
disrupting the line to rush the makeup order through the line.

On the other hand, when low yield loss results in more good product finishing than
required to filt an order, the excess will go into finished goods inventory (FGI) and be
used to fill future orders. The cost to the firm is that incurred to hold the extra inventory in
FGL. Of course, if all products are customized and cannot be used against future demand,
the extra inventory will amount to scrap.

At any rate, there is no reason to expect the cost of being short on an order by n
units to be equal to that of being over it by n units. In most cases, the cost of being short
exceeds that of being over. Hence, from a cost minimization standpoint, it might make
sense 1o inflate by more than the expected yield loss. For instance, in a situation where
yield varies between 80 and 100 percent, we might divide the amount demanded by 0.85
instead of 0.9, so that we release 106 parts instead of 100 to cover an order of 90. This
would allow us to ship on time as long as the yield loss was not greater than 15 percent.

But in cases where yield loss is frequently all or nothing (e.g., we get either 100
good parts or none from a release quantity of 100), inflating job size is generally futile,
(We would have to start an entire second job of 100 parts to make up for the catastrophic
failure of the first batch.) A more practical alternative is to carry safety stock in finished
goods inventory; for example, we try to carry n jobs” worth of FGI, where n is the number
of scrapped jobs we want to be able to cover, In a system with many products, this can
require considerable (expensive) inventory.

The unavoidable conclusion is that scrap loss caused by variable yields is costly and
disruptive. The more variable the yields, the more difficult it is to mitigate the effect
with inflated job sizes or safety stocks. Thus, in the long term, the best option is to strive
to minimize or eliminate scrap and rework.

12.4.2 Operations Supports Quality

The previous subsection stressed that better quality promotes better operations. Happily,
the reverse is also frequently true. As pointed out frequently in the JIT literature, to the
extent that tighter operations management leads to less WIP (i.e., shorter queues), it aids
in the detection of quality problems and facilitates tracing them to their source.
Specifically, suppose that there tends to be a great deal of WIP between a pointina
production line that causes defects and the point where these defects are detected. The
defects might be caused by a machine early in the line because it has imperceptibly gone
“out of control” but not be detected until an end-of-line (EOL) test. By the time a defect
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is detected at the EQL test, it is likely that all the parts that have been produced by the
upstream machine are similarly defective. If the line has a high WIP level in it, scrap
ioss could be large. H the line has little WIP, scrap loss is likely to be much less.

Of course, in the real world, causes and detection of defects are considerably more
complex and varied than this. There are likely to be many sources of potential defects,
some of which have never been encountered before—or at least, for which there is no
institutional memory. Detection of defects can occur at many places in the line, both
at formal inspection points and as a result of informal observations elsewhere. While
these realities serve to make understanding and managing quality a challenge, they do
not alter the main point: High WIP levels tend to aggravate scrap loss by increasing the
time, and hence number of items produced, between the cause and the detection of a
defect.

Example: A Defect Detection

Consider again the CONWIP line depicted in Figure 12.4, only this time suppose that
the rework rate at machine 2 is zero. Instead, suppose that each time a job is processed
on machine 1, there is a probability g that this machine goes out of control and produces
bad parts until it is fixed. However, the out-of-control status of machine I can only be
inferred by detecting the bad parts, which does not occur until after the parts have been
processed at machine 4. Each time a defective part is detected, we assume that machine -
1 is corrected instantly. But all the parts that have been produced on machine 1 between
the time it went out of control and the time the defect was detected at machine 4 will be
defective and must be scrapped at the end of the line.

Figure 12.8 iflustrates the curve of throughput (of good parts only) versus WIP for
four cases of this example. First, when ¢ = 0 (no quality problems) and all processing
times are deterministic, we get the familiar best-case curve. Second, for comparison,
we plot throughput versus WIP when g = 0 but processing times are exponential (i.e.,
they have CVs of 1). Here, throughput increases with WIP, reaching nearly maximum
output at around 15 jobs. Note that this curve is somewhat better than (i.e., lies above)
the practical worst case due to the imbalance in the line.

However, when g = 0.03 and processing times are deterministic, throughput in-
creases and then declines with WIP. The reason, of course, is that for high WIP levels, the
increased scrap loss outweighs the higher production rate it promotes. The maximum
throughput occurs at a WIP level of three jobs, the critical WIP level. When ¢ == 0.05
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and processing times are exponential, throughput again increases and then decreases,
with maximum throughput being achieved at a WIP level of nine jobs. Notice that while
we can make up for the variability induced by random processing times by maintaining a
high WIP level (for example, 15 jobs). the variability due to scrap loss is only aggravated
by more WIP. So instead of putting more WIP in the system to compensate, we must
reduce the WIP level to mitigate this second form of variability and thereby maximize
thronghput. Metaphorically speaking, this is like lowering the water to cover the rocks.
Obviously, metaphors have their limits.

It is our guess that in real life, throughput-versus-WTP curves frequently do exhibit
this increasing-then-decreasing type of behavior, not only because of poor quality de-
tection but also because high WIP levels make it harder to keep track of jobs, so that
more time is wasted locating jobs and finding places to put them between processes.
Moreover, more WIP leads to more chances for damage. In general, we can conclude
that better operations (i.e., tighter WIP control} leads to better quality (less scrap loss)
and hence higher throughput (better operations again). This is a simple illustration of
the fact that quality and operations are mutually supportive and therefore can be jointly
exploited to promote a cycle of continual improvement.

12.5 Quality and the Supply Chain

Total quality management refers to quality outside, as well as inside, the walls of the
plant. Under the topic of vendor certitication (e.g., ISO 9000), the TQM literature
frequently mentions the supply chain: the network of plants and vendors that supply
raw mnaterial, components, and services to one another. Almost all plants today rely on
outside suppliers for at least some of the inputs to their manufacturing process. Indeed,
the tendency in recent years has been toward vertical deintegration through outsourcing
of an increasing percentage of manufactured components.

When significant portions of a finished product come from outside sources, it is
clear that internal, and peshaps external, quality at the plant can depend critically on
these inputs. As computer programmers say, “garbage in, garbage out.” (Or as farmers
say, “you can’t make a silk purse out of a sow's ear,”) Whatever the metaphor, the
point is that a TQM program must address the issue of purchased parts if it is to be
effective. Vendor certification, working with fewer vendors, using more than price to
choase between vendors, and establishing quality assurance procedures as close to the
front of the line as possible—all are options for improving purchased part quality. The
choice and character of these policies obviously depend on the setting, We refer the
reader to the previously cited TQM references for more in-depth discussion,

Just as internal scrap and rework problems can have significant operations con-
sequences, quality problems from outside suppliers can have strong impacts on plant
performance. First, any defects in purchased parts that find their way into the produc-
tion process 10 cause scrap or rework problems will affect operations in the fashion we
have discussed. However, even if defective purchased parts are screened out before they
reach the line, either at the supplier plant or at the receiving dock, these quality problems
can still have negative operational effects. The reason is that they serve to inflate the
variability of delivery time. If scrap or rework problems at the supplier plant cause some
orders to be delivered late, or if some orders must be sent back because quality problems
were detected upon receipt, the effective delivery time (i.e., the time between submission
of a purchase order and receipt of acceptable parts) will not be regular and predictable.
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12.5.1 A Safety Lead Time Example

To appreciate the effects of variable delivery times for purchased parts, consider the
following example. A plant has decided to purchase a particular part from one of two
suppliers on a lot-for-lot basis. That is, the company will not buy the part in bulk and
stock it at the plant, but instead will bring in just the quantities needed to satisfy the
production schedule. If the part is late, the schedule will be disrupted and customer
deliveries may be delayed. Therefore, management chooses to build a certain amount
of safety lead time into the purchasing lead time. The result is that, on average, parts
will arrive somewhat early and wait in raw materials inventory until they are needed at
the line. The key question is, How much safety lead time is required?

Figure 12.9 depicts the probability density functions (pdf’s) for the delivery time
from the two candidate suppliers. Both suppliers have mean delivery times of 10 days.
However, deliveries from supplier 2 are much more variable than those from supplier 1
(perhaps because supplier 2 does not have sound OM and TQM systems inplace). Asa
result, to be 95 percent certain that an order will arrive on time (i.¢., when required by the
production schedule), parts must be ordered with a lead time of 14 days from supplier 1
or a lead time of 23 days from supplier 2 (see Figure 12.10). The additional lead time
is reguired for supplier 2 to make up for the variability in delivery time. Notice that this
implies that an average order from supplier 1 will wait in raw materials inventory for
14 — 10 = 4 days, while an average order from supplier 2 will wait in raw materials
inventory for 23 — 10 = 13 days—an increase of 225 percent. From Linle's law, we
know that raw materials inventory will also be 225 percent larger if we purchase from
supplier 2 rather than from supplier 1.

12.5.2 Purchased Parts in an Assembly System

Ficure 12,9

Effect of delivery time
variability on purchasing
lead times

The effects of delivery time variability become even more pronounced when assemblies
are considered. In many manufacturing environments, a number of components are
purchased from different suppliers for assembly into a final product. To avoid a schedule
disruption, all the components must be available on time. Because of this, the amount
of safety lead time needed to achieve the same probability of being able to start on time
is larger than it would be if there were only a single purchased component.

To see how this works, consider an example in which a product is assembled from
10 components, all of which are purchased from separate vendors and have the same
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distribution (i.e., mean and variance) of delivery time. Since the parts are identical with
regard to their delivery characteristics, it is sensible to choose the same purchasing lead
time for all. Suppose this is done as in the previous single-component example so that
each cormponent has a 95 percent chance of being received on time. Assuming delivery
times of the different components to be independent, the probability that all are on time
is given by the product of the individual on-time probabilities

Prob{all 10 components arrive on time} = (0.95)'0 = 0.5987

Assembly will be able to start on time less than 60 percent of the time!

Obviously, the plant needs longer lead times and higher individual on-time proba-
bilities to achieve the desired 95 percent likelihood of having all components in when
required by the schedule. Specifically, if we let p represent the on-time percentage for
a single part, we want

pi® =095

or p = 09510 = 0.9949

To ensure that the entire set of parts is available 95 percent of the time, each individual
part must be available 99.49 percent of the time.

To see the operations effects of this, consider Figure 12,10, which shows the cumu-
lative distribution function {cdf) of the delivery times from supplier 1.7 This curve gives
the probability that the delivery time is less than or equal to ¢ for all values of ¢. Fora
single component to be available 95 percent of the time, a purchasing lead time of 14
days (i.c., a safety lead time of four days) is sufficient. However, for a single component
to be available 99.49 percent of the time, in order to support the 10-component assembly
system, a purchasing lead time of 16.3 days (i.c., a safety lead time of 6.3 days) is needed.
Thus, purchased parts will reside in raw materials inventory for an additional 2.3 days

"The cdf is simply the area under the pdf shown in Figure 12.9 from O to 1.
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on average in the multicomponent assembly system, and therefore the raw materials
inventories will be increased by a corresponding amount.

Since multiple-component systems require high individual on-time probabilities,
the tails of the delivery time distributions are critical. For instance, the purchasing lead
time required for supplier 2 in Figure 12.10 to achieve a 99.49 percent probability of
on-time delivery is 33.6 days. Recall that in the single-component case, there was a
difference of nine days between the required lead times for suppliers 1 and 2 (that is,
14 days for supplier 1 and 23 days for supplier 2). In the 10-component case, there is
a difference of 33.6 — 16.3 = 17.3 days. The conclusion is that reliable suppliers are
extremely important to efficient operation of an assembly system that involves multiple
purchased parts.

12.5.3 Vendor Selection and Management

The preceding discussion has something (though far from everything) to say about the
problem of supplier selection. To see what, suppose components are purchased from
two separate suppliers. Each has a probability p of delivering on time, so that the
probability of receiving both parts on time is p?. Now, further suppose that both parts
could be purchased from a single vendor. If that vendor could provide better on-time
performance than p? for the combined shipments, then, all other things being equal, it
would be better to switch to the single vendor. Even if the purchasing cost is higher
when using the single vendor, the savings in inventory and schedule disruption costs
may justify the switch. Having fewer vendors providing multiple parts might preduce
better on-time performance than having many vendors providing single parts, for these
reasons:

1. Purchases become a larger percentage, and therefore a higher-priority piece, of
the supplier’s business.

2. The purchasing department can keep better track of suppliers (by knowing
about special circumstances that would aiter the usual purchasing lead times, by
being able to place “reminder” phone calls, etc.) if there are fewer of them.

The insights from these simplified examples extend to more realistic systems. Ob-
viously, in the real world, suppliers do not have identical delivery time distributions, nor
are the costs of the different components necessarily similar. For these reasons, it may
make sense to set the on-time delivery probabilities differently for different components.
An inexpensive component (¢.g., a Tesistor) should probably have a very high on-time
probability because the inventory cost of achieving itis low.? An expensive component
(e.g., a cathode-ray tube display) should have a relatively lower on-time probability, in
order to reduce its safety lead time and hence average inventory level. The general idea
is that if a schedule disruption is going to occur, it ought to be due to a $500 cathode-ray
tube, not a 2-cent resistor.

Formal algorithms exist for computing appropriate safety lead times in assembly
systems with multiple nonidentical purchased components (see Hopp and Spearman
1993), But whether we use algorithms or less rigorous methods to establish safety lead
times for the individual components, the result will be to set an on-time probability
for each component. As our previous discussion of Figure 12.9 illustrated, for a fixed

& Actually, for reaily inexpensive items that are used with some regularity, it makes sense to simply order
them in bulk and stock themn on site to snsure that they are visuaily never out of stock. However, this advice
does not apply to bulky maserials (e.g., packaging) for which the cost of storage space and handling makes
large on-site stocks uneconomical.
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on-time probability, safety lead time and raw materials inventory are both increasing in
the variance of supplier delivery time. Moreover, as we observed in Figure 12,10, the
more independent suppliers we order from, the higher the individual on-time probabilities
required to support a given probability of maintaining schedule.

This discussion can be thought of as a quick factory physics interpretation of the JIT
view on vendoring. The JIT literature routinely suggests certifying a smaller number
of vendors, precisely because low delivery time variance is needed to support just-in-
time deliveries. Indeed, Toyota has evolved a very extensive system of working with its
suppliers that goes well beyond simple certification—to the point of sending in advisers to
set up the “Toyota system,” which addresses both quality and operations, in the supplier’s
plant. The goal is to nurture suppliers that effectively support Toyota’s operation and
are efficient enough to remain economically viable partners over the long term.

12.6 Conclusions

Quality is a broad and varied subject, which ranges from definitions of customer needs
to analytical measurement and maintenance tools. In this chapter, we have tried to give
a sense of this range and have suggested references for the interested reader to consult
for additional depth. In keeping with the factory physics framework of this book, we
have concentrated primarily on the relationship between quality and operations and have
shown that the two are intimately related in a variety of ways. Specifically, we have
argued the following:

1. Good guality supports good operations. Reducing recycle and/or scrap serves
to increase capacity and decrease congestion. Thus, better quality control—through
tighter control of inputs, mistake prevention, and earlier detection—facilitates increased
throughput and reduced WIP, cycle time, and customer lead time.

2. Good operations supports quality improvement. Reducing WIP—via better
scheduling, pull mechanisms for shop floor control, or (although it is hardly an imag-
inative option) capacity increases—serves to reduce the amount of product generated
between the cause of a defect and its detection. This has the potential to reduce the scrap
and rework rate and to help identify the root causes of quality problems.

3, Good quality at the supplier level promotes good operations and quality af the
plant level. A supplier plant with fewer scrap, rework, and external quality problems will
make more reliable deliveries. This enables a customer plant to use shorter purchasing
lead times for these parts (e.g., just-in-time becomes a possibility), to carry smaller raw
materials inventories, and to avoid frequent schedule disruption.

Based on these discussions, we conclude that both quality and operations are integral
parts of a sound manufacturing management strategy. One cannot reasonably consider
one without the other. Hence, perhaps we should really view total quality management
more in terms of quality of management than management of quality.

Study Questions

1. Why is quality so difficult to define? Provide your own definition for a specific operation of
your choosing.
2. Give three major ways that good internal quality can promote good external quality.
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3. Using the following definition of the cost of quality

Quality costs are defined us any expenditures on manufacturing or service in excess of
those that would have been incurred if the product had been built or the service had
been performed exactly nght the first time,

Garvin (1988, 78}

identify the costs associated with each of the following types of quality problems:

a. A flow line with a single-product family where defects detected at any station are scrapped.

b. A flow line with a single-product family where defects detected at any station are reworked
through a portion of the line.

c. A cutting machine where bit breakage destroys the part in production and brings the
machine down for repair.

d. Steel burners for a kitchen range that are coated with a porcelain that cracks off after a
small amount of use in the field.

e. A minivan whose springs for holding open the hatchback are prone to failure.

F A cheap battery in new cars and light trucks that fails after about 18 months when the
warranty period is 12 months.

4. For each of the following examples, would you expect cost 10 increase or decrease with

quality? Explain your reasoning.

2. An automobile manufacturer increases expected battery life by installing more expensive
batteries in new cars,

b A publisher reduces the number of errors in newly published books by assigning extra
proofreaders.

¢. A steel rolling mill improves the consistency of its galvanizing process through installation
of a more sophisticated monitoring system (i.¢., that measures temperature, pH, etc., at
various points in the chemical bath).

4. A manufacturer of high-voltage switches eliminates quality inspection of metal castings
after certifying the suppiser from which they are purchased.

e. An automobile manufacturer repairs an obvious defect (e.g., a defective paint job) after the
wamanty period has expired.

5. What quality implications could setup time reduction have in a manufacturing line?
6. How might improved internal quality make scheduling a production system easier?
7. Why do the operational consequences of rework become more severe as the length of the

rework loop increases?

8. How are the operational consequences of rework similar to those of scrap? How are they

different?

9. Why is it important to detect quality problems as early in the line as possible?

Problems

1. Manov Steel, Inc., has a rolling mill that produces sheet steel with a nominal thickness of

0.125 inch. Suppose that the specification limits are given by LSL = 0.120 and

USL = 0.130 inch. Based on historical data, the actual thickness of a random sheet produced

by the mill is normally distributed with mean and standard deviation of i = 0.125 and

o = 0.0025.

a. What are the lower and upper natura] tolerance limits (LNTL and UNTL) for individual
sheets of steel?

. What are the lower and upper contro? limits (LSL and USL) if we use a control chart that
plots the average thickness of samples of size n = 4?
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c. What will be the percentage nonconforming, given the above values for (LNTL, UNTL)
and (LSL, USL)? What is the process capability index C,,? Do you consider this process
capable of meeting its performance specifications?

d. Suppose that the process mean suddenly shifts from 0.125 to 0.1275. What happens to the
process capabitity index €, and the percentage nonconforming?

e. Under the conditions of d, what is the probability that the ¥ chart specified in & will detect
an out-of-control signal on the first sample after the change in process mean?

2. A purchasing agent has requested quotes for valve gaskets with diameters of 3.0 & 0.018 in.

SPC studies of three suppliers have indicated that their processes are in statistical control and

produce measurements that are normally distributed with the following statistics:

Supplier 11 u = 3 inches o = (.009 inch
Supplier 2: & = 3 inches o = (.0044 inch
Supplier 3. & = 2.9%9 inches o = 0.003 inch

Assuming that all suppliers offer the same price and delivery reliability/flexibility, which
supplier should the agent purchase from? Explain your teasoning.

3. Consider a single machine that requires one hour to process parts. With probability p, a given
part must be reworked, which requires a second one-hour pass through the machine. However,
all parts are guaranteed to be good after a second pass, so none go through more than twice,
a. Compute the mean and variance of the effective processing time on this machine as a

function of p.
b. Use your answer from a to compute the squared coefficient of variation (SCV) of the
effective processing times. Is it an increasing function of p? Explain.

4. Suppose the machine in Problem 1 is part of a two-station line, in which it feeds a second
machine that bas processing times with a mean of 1.2 hours and SCV of 1. Jobs arrive to the
line at a rate of 0.8 job per hour with an arrival SCV of 1.

a. Compute the expecied cycle time in the line when p = 0.1.

b. Compute the expected cycle time in the line when p = 0.2.

¢. What effects does rework have on cycle time, and how do these differ in a and 57

5. Suppose a cellular telephone plant purchases etectronic components from various suppliers.
For one particular component, the plant has a choice between two suppliers: Supplier 1 has
delivery lead times with a mean of 13 days and a standard deviation of 1 day, while supplier 2
has delivery lead times with a mean of 15 days and a standard deviation of 5 days. Both
suppliers can be assumed to have normally distributed lead times.

a. Assuming that the cefiniar plant purchases the component on  Jot-for-lot basis and wants
to he 09 percent certain that the component is in stock when needed by the production
schedule, how many days of lead time are needed if supplier 1 is used? Supplier 2?

». How many days will a typical component purchased from supplier 1 wait in inventory
before being used? From supplier 27 How might this information be used to justify using
supplier 1 even if it charges a higher price?

¢, Suppose that the cellular plant purchases (on a lot-for-lot basis) 100 parts from different
suppliers, all of which have delivery times like those of supplier 1. Assuming all
components ar¢ assigned the same lead time, what lead times are required to ensure that all
components are in stock when required by the schedule? How does your answer change if
all suppliers have lead times like those of supplier 27

d. How would your answer to o be affected if, instead of ordering lot for lot, the cellular plant
ordered the particular component in batches corresponding to five days’ worth of
production?

6. Consider a workstation that machines castings into switch housings. The castings are
purchased from & vendor and are prone to material defects. If all goes well, machining
(including load and unload time) requires 15 minuies, and the SCV of natural processing time
(due to variability in the time it takes the operator to load and start the machine) is 0.1.
However, two types of defect in the castings can disrupt the process.

.



Chapter 12 Total Quality Manufacturing 405

One type of defect (a flaw) causes the casting to crack during machining. When this
happens, the casting is scrapped at the end of the operation and another casting is machined.
About 15 percent of castings have this first type of defect.

A second type of defect (a hard spot) causes the cutting bit to break. When this happens,
the machine must be shut down, must wait for a repair technician to arrive, must be examined
for damage, and must have its bit replaced. The whole process takes an average of two hours,
but is quite variable (i.e., the standard deviation of the repair time is also two hours}.
Furthermore, since the casting must be scrapped, another one must be machined to replace it
once the repair is complete. About five percent of castings have this second type of defect.

a. Compute the mean and SCV of effective process time (i.e., the time it takes to machine a
good housing). (Hins: Usc Equations (i2.15} and (12.17) to consider the effects of the first
type of defect, and consult Table 8.1 for formulas to address the second type of defect.
Question: Should stoppages due to the second type of defect be modeled as preempt or
nonpreempt outages’)

&. How does your answer 10 a change if the defect percentages are reversed (that is, five
percent of castings have the first type of defect, while 15 percent have the second type)?
What does this say about the relative disruptiveness of the two types of defects?

¢. Suppose that by feeding the castings through the cutting tool more slowly, we could ensure
that the second type of defect does not cause bit breakage. Under this policy, castings with
the second type of defect will be scrapped, but will not cause any machine downtime {i.e.,
they become identical to the first type of defect). However, this increases the average time
to machine a casting without defects from 15 minutes to 7 minutes. What is the maximum
value of 7 for which the stower feed speed achieves at least as much capacity as the
original situation in a7

4. Which workstation would you rather manage, that in a (i.e., fast feeds and bit breakages)
or that in ¢ (i.¢., slow speeds, resulting in machining times equal to your answer to ¢, and
no bit breakages)? (Hini: How do the effective SCVs of the two cases compare?)
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In matters of style, swim with the current;
In matters of principle, stand like a rock.
Thomas Jefferson
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13 A PurLL PLANNING
FRAMEWORK

We think in generalities, we live in detail,
Alfred North Whitehead

13.1 Introduction

Recall that we began this book by stating that the three critical elements of an operations
management education are

1. Basics
2. Intuition
3, Synthesis

We spent almost all Parts 1 and I on the first two items. For instance, the tools and termi-
nology introduced in Part [ (for example, EOQ, (Q, r), BOM, MPS) and the measures of
variability (¢.g., coefficient of variation) and elementary queueing concepts presented in
Part IT are basics of fundamental importance to the manufacturing manager. The insights
from traditional inventory models, MRP, and JIT we observed in Part I and the factory
physics relationships among throughput, WIP, cycle time, and variability we developed
in Part II are key components of sound intuition for making good operating decisions.

But, with the exception of a bit of integration of the contrasting perspectives of
operations and behavioral science in Chapter 11 and the pervasive aspects of quality
presented in Chapter 12, we have devoted almost no time 1o the third jtem, synthesis.
We are now ready to fill in this important gap by establishing a framework for applying
the principles from Parts 1 and II to real manufacturing problems.

Qur approach is based on two premises:

1. Problems at different levels of the organization require different levels of detail,
modeling assumptions, and planning frequency.

2. Planning and analysis tools must be consistent across levels.

The first premise motivaies us to use scparate tools for separate problems. Unfor-
tunately, using different tools and procedures throughout the system can easily bring
us into conflict with the second premise. Because of the potential for inconsistency,
it is not uncommon to find planning tools in industry that have been extended across
applications for which they are ill suited. For instance, we once worked in a plant that
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used a scheduling toal that calculated detailed, minute-by-minute production on each
machine in the plant ic generate two-vear aggregate production plans. Although this
tool may have been reasonable for short-term planning (e.g., a day or a week), it was far
too cumbersome to nin for long-term purposes (the data input and debugging alone took
an entire week!). Moreover, it was 5o inaccurate beyond a few weeks into the future that
the schedule, so painfully obtained, was virtualty ignored on the plant floor.

To develop methods that are both well suited to their specific application and mu-
tually consistent across applications, we recommend the following steps in developing
a planning framework:

1. Divide the overall system appropriately. Different planning methods for
different portions of the process, different product categories, different planning
horizons, different shifts, etc., can be used. The key is to find a set of divisions
that make each piece manageable, but still allow integration. )

2. Identify links between the divisions. For instance, if production plans for two
products with a shared process center are made separately, they should be
linked via the capacity of the shared process. If we use different tools to plan
production requirements over different time horizons, we should make sure that
the plans are consistent with regard to their assumptions about capacity, product
mix, staffing, etc.

3. Use feedback to enforce consistency. All analysis, planning, and control tools
make use of estimated parameters (e.g., capacity, machine speeds, yields,
failure and repair rates, demand rates, and many others). As the system runs,
we should continually update our knowledge of these values. Rather than allow
the inputs to the various tools to be estimated in an ad hoc, uncoordinated
fashion, we should explicitly make use of our updated knowledge to force tools
to make use of timely, consistent information.

In the remainder of this chapler, we preview a planning framework that is consistent
with these principles, as well as the factory physics principles presented earlier. We do
not pretend that this framework is the only one that is consistent with these principles.
Rather, we offer it as one approach and try to present the issues involved at the various
levels from a sufficiently broad perspective as to allow room for customization to specific
manufacturing environments. Subsequent chapters in Part ITT will flesh out the major
components of this framework in greater detail.

13.2 Disaggregation

The first step in developing a planning structure is to break down the various decision
problems into manageable subproblems. This can be done explicitly, through the devel-
opment of a formal planning hierarchy, as we will discuss. Or it can be done implicitly
by addressing the various decisions piecemeal with different models and assumptions.
Regardless of the level of foresight, some form of disaggregation will be done, since all
real-world production systems are too complex to address with a single model.

13.2.1 Time Scales in Production Planning

One of the most important dimensions along which manufacturing systems are typically
broken down is that of time. The primary reason for this is that manufacturing decisions
differ greatly with regard to the length of time over which their consequences persist.
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For example, the construction of a new plant will affect a firm’s position for years or
even decades, while the effects of selecting a particular part to work on at a particular
workstation may evaporate within hours or even minutes, This makes it essential to
use different planning horizons in the decision-making process. Since the decision to
construct a new plant will influence operations for years, we must forecast these effects
years into the future in order to make a reasonable decision. Hence, the planning horizon
should be long for this problem. Clearly, we de not need to look nearly so far into the
future to evaluate the decision of what to work on at a workstation, so this problem will
have a short planning horizon.

The appropriate length of the planning horizon also varies across industries and
levels of the organization. Some industries, il and long-distance telephone, for example,
routinely make use of horizons as long as several decades because the consequences of
their business decisions persist this long. Within a given company, longer time horizons
are generally used at the corporate office, which is responsible for long-range business
planning, than at the plant where day-to-day execution decisions are made.

In this book we focus primarily on decisions relevant to running a plant, and we
divide planning horizons in this context into long, intermediate, and short. At the plant
level, a long planning horizon can range from one to five years with two years being
typical. An intermediate planning horizon can range from a week to a year, with a month
being typical. A short time horizon can range from an hour to a week, with a day being
typical.

Table 13.1 lists various manufucturing decisions that are made over long, interme-
diate, and short planning horizons. Notice that in general, long-range decisions address
strategy, by considering such questions as what to make, how to make it, how to finance

TasLE 13.1 Strategy, Tactics, and Control Decisions

Time Horizon Length Representative Decisions

Long term (strategy) Year to decades  Financial decisions
Marketing strategies
Product designs
Process technology decisions
Capacity decisions
Facility locations
Supplicr contracts
Personnel development programs
Plant control policies
Quality assurance policies

Intermecdiate term (tactics) ~ Week to year Work scheduling
Staffing assignments
Praventive maintenance
Sales promotions
Purchasing decisions

Short term (control} Hour to week Material flow control
Worker assignments
Machine setup decisions
Process control
Quality compliance decisions
Emergency equipment repairs
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it, how to sell it, where Lo muke it, and where to get materials and general principles for
operating the systenm. Intermediate-runge decisions address tactics, by determining what
to work on, whe will work on it, what actions will be taken 1o maintain the equipment,
what products will be pushed by sales. and so on. These tactical decisions must be made
within (he physical and logical constraints established by the strategic long-range deci-
sions, Finally, short-range decisions address control, by moving material and workers,
adjusting processes and equipment, and taking whatever actions are required to ensure
that the systemn centinues to function toward its goal. Both the long-term strategic and
intermediate-range tactical decisions establish the constraints within which these control
decisions must be made.

Different planning horizons imply different regemeration frequencies. A long-
range decision that is based on information extending years into the future does not need
to be reconsidered very often, because the estimates about what will happen this far into
the future do not change very fast. For instance, while it is a good thing for a plant
to reevaluate what products it should be making, this is not a decision that should be
reconsidered every week. Typically, long-range problems are considered on a quarterly
to annual basis, with very long-range issues {e.g., what business should we be in?)
being considered even less frequently. Intermediate-range problems ase reconsidered
on roughly a weekly to monthly basis. Short-range problems are reconsidered on a
real-time 1o daily basis. Of course, these are merely typical values, and considerable
variation oceurs across firms and decision problems.

In addition to differing with respect to regeneration frequency, problems with dif-
ferent planning horizons differ with respect to the required level of detail. In general, the
shorter the planning horizon, the greater the amount of detail required in modeling and
data collection. For instance, if we are making a long-term strategic capacity decision
about what size plant to huild, we do not need to know very much about the routings that
parts will take. It may be enough to have a rough estimate of how much time each part
will require of each process, in order to estimate capacity requirements, However, at the
intermediate tactical level, we need more information about these routings, for instance,
which specific machines will be visited, in order to determine whether a given schedule
is actually feasible with respect to customer requirements. Finally, at the short-terrn
control level, we may necd to know a great deal about part routings, including whether
or not a given part requires rework or other special attention, in order to guide parts
through the system.

A good analogy for this strategy/tactics/control distinction is mapmaking. Long-
term problems are like long-distance travel. We require amap that covers a large amount
of distance, but not in great detail. A map that shows only major highways may be
adequate for our needs. Likewise, a long-term decision problem requires a tool that
covers a large amount of time (i.e., long planning horizon), but not in great detail. In
contrast, shori-term problems are like short-distance travel. We require a map that does
not cover much distance, but gives lots of details about what it does cover. A map
showing city streets. or even individual buildings, may be appropriate. Analogously, for
a shori-term decision problem, we require a fool that does not cover much time (i.e.,
short planning horizon), but gives considerable detail about what it does cover,

13.2.2 Other Dimensions of Disaggregation

In addition to time, there are several other dimensions along which the production plan-
ning and control problem is typically broken down. Because modern factories are large
and complex, it is frequently impossible to consider the plant as a whole when one is
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making specific decisions. The following are three dimensions that ¢an be used to break
the plant into more manageable pieces for analysis and management:

I. Processes. Traditionally, many plants were organized according to physical
manufacturing processes. Operations such as casting, milling, grinding, drilling, and
heat treat were performed in separaie departments in distinct locations and under different
management. While such process organization has become less popular in the wake of
the JIT revolution, with its flow-oriented cellutar layouts, process divisions still exist. For
instance, casting is operationally very different, and sometimes physically distant, from
rolling in a steel mill. Likewisc, mass lamination of copper and fiberglass cores in large
presses is distinet—physically, operationally, and logistically—from the circuitizing
process in which circuitry is etched into the copper in a photo-optical/chemical flow line
process. In such situations, it frequently makes sense to assign separate managers to the
different processes. 1t may also be reasonable to use different planning, scheduling, and
control procedures.

2. Products. Although plants dedicated to a single product exist (e g, a polystyrene
plant), most plants today make multiple products. Indeed, the pressure to compete via
variety and customization has probably served to increase the average number of different
products produced by an average plant. For instance, it is not uncommon to find a plant
with 20,000 distinct part numbers (i.e., counting finished products and subcomponents).
Because it is difficult, under these conditions, to consider part numbers individually,
many manufacturing plants aggregate part numbers into coarser categories for planning
and management purposes.

One form of aggregation is to lump parts with identical routings together. Typically,
there are many fewer routings through the plant than there are part numbers. For instance,
a printed-circuit board plant, which produces several thousand different circuit boards,
may have only two basic routings (e.g., for small and large boards). Frequently, however,
the actual number of routings can be substantially larger than the number of basic routings
if one counts minor variations (e.g., extra test steps, vendoring of individual operations,
and gold plating of contact surfaces) in the basic routing. For planning, it is generally
desirable to keep the number of “official” routings to a minimum by ignoring minor
variations.

In systems with significant setup times, aggregation by routing may be going too
far. For instance, a particular routing in a circuit board line may produce 1,000 different
circuit boards. However, there may be only four different thicknesses of copper. Since
the speed of the conveyor must be changed with thickness (to ensure proper etching),
a setup involving lost capacity must be made whenever the linc switches thicknesses.
In addition, the 1,000 boards may require three different dies for punching rectangular
holcs in the boards. Whenever the line switches between boards requiring different dies,
a setup is incurred. If all possible combinations of copper thickness and die requirement
are represented in the 1,000 boards, then there are 4 x 3 = 12 distinct product families
within the routing. This definition of family ensures that there are no significant setups
within families but there may be setups benween families. As we will discuss in Chapter
15, setups have important ramifications for scheduling. For this reason, aggregation of
praducts by family can often simplify the planning process without oversimplifying it.

3. People. There are a host of ways that a factory’s workforce can be broken down:
labor versus management, union versus nonunion, factory floor versus staff support,
permanent versus temporary, departments (e.g., manufacturing, production control, en-
gineering, personnel), shifts, and so on. In a large plant, the personnel organization
scheme can be almost as complex as the machinery. While a detailed discussion of
workforce organization is largely beyond the scope of this book—we touched on some
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of the issues involved in Chapter | l—we feel it is important to point out the logistical
implications of such orgamzations. For instance, having separate managers for different
processes or shifts can lead 1o a lack of coordination. Relying on temporary workers to
facilitate a varying workforce can decrease the institutionai memory, and possibly the
skill level, of the organization. Rigidly adhering to job descriptions can preclude oppor-
tunities for cross-training and flexibility within the system. As we stressed in Chapter
11, the effectiveness of a manufacturing system is very much a function of its work-
force. While it will always be necessary to classify workers into different categories for
purposes of training, compensation, and communication, it is important to remember
that we are not necessarily constrained to follow the procedures of the past. By taking a
perspective that is sensitive to logistics and people, a good manager will seek effective
personnel policies that support both.

There is nothing revolutionary about the previous discussion about separating decision
problems along the dimensions of time, process, prodact, or peopie. For instance,
virtuatly every manufacturing operation in the world does some sort of long-, inter-
mediate-, and short-range decision making. What distinguishes a good system from a bad
one is not whether it makes such a breakdown, but how well the resulting subproblerns-
are solved and, especially, how wel they are coordinated with one another. We will
examine the subproblems in some detail in the remaining chapters of Part I11. For now,
we begin addressing the issue of coordination by means of an iltustration.

The problem of what parts to make at what times is addressed at the long-, interme-
diate-, and short-term levels. Over the long term, we must worry about rough valumes
and product mix in order to be able to plan for capacity and staffing. Overthe intermediate
term, we must develop a somewhat more detailed production pian, in order to procure
materials, line up vendors, and rationally negotiate customer contracts, Over the short
term, we must establish and execute a detailed work schedule that controls what happens
at each process center. The basic essence of all three problems is the same; only the
time frame is different. Hence, it seems obvious that the decisions made af the three
different levels should be consistent, at least in expectation, with one another. As one
might expect, this is easier to say than to do.

When we generate a long-range production plan, giving the quantity of each part to
produce in various time buckets (typically months or quarters), we cannot possibly con-
sider the production process in enough detail to determine the exact number of machine
setups that will be required. However, when we develop an intermediate-range produc-
tion schedule, we must compute the required number of setups, because otherwise we
cannot determine whether the schedule is feasible with respect to capacity. Therefore, for
the long-range plan to be consistent with the intermediate-range plan, we should make
sure that the long-range planning tool subtracts an amount from the capacity of each
process center that corresponds to an anticipated average number of setups. To ensure
this over time, we should track the actual number of setups and adjust the long-range
planning accordingly.

A similar link is needed between the intermediate- and short-term plans. When
we generate an intermediate-range production schedule, we cannot anticipate all the
variations in material flow that will occur in the actual production process. Machines
may fail, operators may call in sick, process or quality problems may arise—none of
which can be foreseen. However, at the short-range level, when we are planning minute
by minute what to work on, we must consider what machines are down, what workers are



414

13.3 Forecasting

Part fI  Principles in Practice

absent, and many other factors affecting the current status of the plant. The result will
be that actual production activities will never match planned ones exactly. Therefore,
for the short-range activities to be able to generate outputs that are consistent, at least on
average, with planned requirements, the intermediate-range planning tool must contain
some form of buffer capacity or buffer lead time to accornmodate randomness. Buffer
capacity might be provided in the form of the “two-shifting” we discussed in Chapter
4 on JIT. Buffer lead times are simply additions to the times we guote to customers {o
allow for unanticipated delays in the factory.

Next we will discuss other links between planning levels in the context of specific
problems. However, since the reader s certain to encounter planning tools and proce-
dures other than those discussed in this book, we have raised the issue of establishing
links as a general principle. The main point is that the various levels can and should be
addressed with different tools and assumptions, but linked via simple mechanisms such
as those discussed previously.

The starting point of virtually all production planning systems is forecasting. This is
because the consequences of manufacturing planning decisions almost always depend
on the future. A decision that looks good now may turn out later to be terrible. But
since no one has a crystal ball with which to predict the future, the best we can do isto
make use of whatever information is available in the present to choose the policies that
we predict will be successful in the future.

Obviously, dependence on the future is not unique to manufacturing. The success
or failure of government policies is heavily influenced by future parameters, such as
interest rates, economic growth, inflation, and unemployment, Profitability of insurance
companies depends on future Habilities, which are in turn a function of such unpredictable
things as natural disasters. Cash flow in oil companies is govermned by future success
in drilling ventures. In cases like these, where the effectiveness of current decisions
depends on uncertain outcomes in the future, decision makers generally rely on some
type of forecasting to generate expectations of the future in order to evaluate alternate
policies.

Because there are many approaches one can use to predict the future, forecasting is
a large and varied field. One basic distinction is between methods of

1. Qualitative forecasting
2. Quantitative forecasting

Qualitative forecasting methods attempt to develop likely future scenarios by using the
expertise of people, rather than precise mathematical models. One structured method
for eliciting forecasts from experts is Delphi. In Delphi, experts are queried about some
future subject, for instance, the likely introduction date of a new technology. This is
usually done in written form, but can be done orally. The responses are tabulated and
returned to the panet of experts, who reconsider and respond again, to the original and
possibly some new questions as well. The process can be repeated several times, until
consensus is reached or the respondents have stabilized in their answers. Delphi and
techniques like it are useful for long-term forecasting where the future depends on the
past in very complex ways. Technological forecasts, where predicting highly uncertain
breakthroughs is at the core of the exercise, frequently use this type of approach. Martino
(1983) summarizes a variety of qualitative forecasting methods in this context.
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Qufmtitative forecasting methods are based on the assumption that the future can
be predicted by using numerical measures of the past in some kind of mathematical
model. There are two basic classes of quantitative forecasting models:

1. Causal models predict a future parameter {e.g., demand for a product} as a
function of other parameters (e.g., interest rates, growth in GNP, housing starts).

2. Time series models predict a future parameter (e.g. demand for a product) as a
. function of past valucs of that parameter (e.g., historical demand).

Because we cannot hope to provide a comprehensive overview of forecasting, we
will restrict our attention to those techniques that have the greatest relevance to operations
management {OM). Specifically, because operational decisions are primarily concerned
with problems having planning horizons of less than two years, the long-term techniques
of qualitative forecasting are not widety used in OM situations. Therefore, we will focus
on quantitative methods. Furthermore, because time series models are simple to use and
have direct applicability (in a nonforecasting context) to the production tracking module,
we will devote most of our attention to these.

Before we cover specific techniques, we note the following well-known laws of
forecasting:

First law of forecasting: Forecasts are always wrong!
Second law of forecasting: Detailed forecasts are worse than aggregate forecasts!

Third law of forecasting: The further into the future, the less reliable the forecast
will be!

No matter how qualified the expert or how sophisticated the mode), perfect prediction
of the future is simply not possible; hence the first law. Furihermore, by the concept
of variability pooling, an aggregate forecast (e.g., of a product family) will exhibit less
variability than a detailed forecast (e.g., of an individual product); hence the second
law. Finally, the further out one goes, the greater the potential for qualitative changes
(e.g., the competition introduces an important new product) that completely invalidate
whatever forecasting approach we use; hence the third law.

We do not mean by these laws to disparage the idea of forecasting altogether. On
the contrary, the whale notion of a planning hierarchy is premised on forecasting. There
is simply no way to sensibly make decisions of how much capacity to install, how large
a workforce to maintain, or how much inventory to stock without some estimate of
future demand. But since our estimate is likely to be approximate at best, we should
strive to make these decisions as robust as possible with respect to errors in the forecast.
For instance, using equipment and plant layouts that enable accommeodation of new
products, changes in volume, and shifts in product mix, sometimes referred to as agile
manufacturing, can greatly reduce the consequences of forecasting errors. Similarly,
cross-training of workers and adaptable workforce scheduling policies can substantially
increase flexibility. Finally, as we noted in Part 1, shortening manufacturing cycle times
can reduce dependence on forecasts.

13.3.1 Causal Forecasting

In a causal forecast, we attempt to explain the behavior of an uncertain future parameter in
terms of other, observable or at least more predictable, parameters, For instance, if we are
trying to evaluate the economics of opening a new fast-food outlet at a given location, we
need a forecast of demand. Possible predictors of demand include population and number
of competitor fast-food restaurants within some distance of the location. By collecting
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data on demand, population, and competition for existing comparable restaurants, we
can use statistics to estimate constants in a model.

The most commonly used model is the simple linear model, of the form
Y=by+ 01 X1 +0:Xr+- -+ by X, (3.1

where ¥ represents the parameter to be predicted (demand) and the X; variables are the
predictive parameters (population and competition). The &; values are constants that
must be statistically estimated from data.

This technique for fitting a function to data is called regression analysis; many com-
puter packages, including all major spreadsheet programs, are available for performing

_ the necessary computations. The following example briefly illustrates how regression

analysis can be used as a tool for causal forecasting.

Example: Mr. Forest’s Cookies

An emerging cookie store franchise was in the process of evaluating sites for future
outlets, Top management conjectured that the success of a store is strongly inflzenced by
the number of people who live within five miles of it. Analysts collected this population
data and annual sales data for 12 existing franchises, as summarized in Table 13.2.

To develop a model for predicting the sales of a new franchise from its five-mile-
radius population, the analysts made use of regression analysis, which is a tool for finding
the “best-fit” straight line through the data. They did this by choosing the Regression
function in Excel, which produced the output shown in Figure 13.1. The three key
numbers, marked in boldface, are as follows:

1. Intercept coefficient, which s the estimate of by in Equation (13.1), or 50.30
(rounded to two decimals) for this problem. This coefficient represents the ¥
intercept of the straight line being fit through the data.

2. X, coefficient, or the estimate of b, in Equation (13.1), which is 4.17 for this
problem. This coefficient represents the slope of the straight line being fit
through the data. It is indicated as “Population (000)” in Figure 13.1.

3. R square, which represents the fraction of variation in the data that is explained
by the regression line. If the data fit the regression line perfectly, R square will

TaBLE 13.2 Mr. Forest’s Cookies

Franchise Data .
Franchise | Population (009) | Sales ($000)
1 50 200
2 25 50
3 14 210G
4 76 240
5 88 400
6 35 200
7 85 410
8 110 500
9 Q5 610
10 21 120
11 30 190
12 44 180
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Ficure 13.1

Excel regression analysis output
SUMMARY OUTPUT

Regression Statistics | i
Multiple R 0380003758 - T
R Square T erradnaa i IR
Adjusted R Square | 0.751855852 -

Standard Error | 77.79635826 .

Observations i 2’ T T e
e e T A I
! df S5 i MS F i Significance F
Regression 11 207768.933] * 207768.9331 | 34.32907286 | 0.000159631
B_es_i(_ii___ e __1_0 . 6052273358 ¢ 60522'?%%58
Total ! 11 |} 268291.6667
| — .
i Coefficients : Standard Error 1 Stat P-value | Lower 95% | Upper 95%
Intercept "50.30456039 . 45.79857723 | 1.098386968 | 0.297777155 | —51.74104657 | 152.3501673

Population {000} i4.169‘903827% 0.711696781 | 5.859101711 0.000159631" 2.584144304 | 5755663349

Ficure 13.2 700 -

Fir of regression line 1o 600 .
Mr. Forest's data

0 I L ; I ) j
¢ ik 40 60 80 160 120

Population (thousands)

be one. The smaller R square is, the poorer the fit of the data to the regression
line. In this case, R square is §.77441441, which roeans that the fit is
reasonably good, but hardly perfect. Excel also generates a plot of the data and
the regression line, as shown in Figure 13.2, which allows us to visually
examine how well the model fits the data.

Thus, the predictive model is given by
Sales = 50.30 + 4.17 x Population (13.2)

where sales are measured in thousands of dollars (3000) and population represents the
five-mnile-radius population in thousands. So a new franchise with a five-mile-radius
population of 60 thousand would have predicted annual sales of

50.30 + 4.17(60) = $300.5

The above equation is in thousands.
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Judging from the results in Figures 13.1 and 3.2, the model appears reasonable for
making rough predictions, provided that the population for the new franchise is between
15,000 and 110,000. Since the initial data set does not include populations outside this
range, we have no basis for making predictions for populations smaller than 15,000 or
larger than 110,000,

If the analysts for Mr. Forest want to develop a more refined model, they might con-
sider adding other predictive variables, such as the average income of the five-mile-radius
population, number of other cookie stores within a specified distance of the proposed
location, and number of other retail establishments within walking distance of the pro-
posed location, The general model of Equation (13.1), known as a multiple regression
model (as opposed to a simple regression model that includes only a single predictive
variable), allows such multiple predictors, as do the computer packages for performing
the computations.

Packages such as Excel make the mechanics of regression simple. But full interpre-
wation of the results requires knowledge of statistics. Given that statistics and regression
are widely used throughout business—for marketing analysis, product design, personnel
evaluation, forecasting, quality control, and process control—they are essential basics of
a modern manager’s skill set. Any good business statistics text can provide the necessary
background in these important topics.

Although frequently useful, a causal model by itself cannot always enable us to
make predictions about the future, For instance, if next month's demand for roofing
materials, as seen by the manufacturer, depends on {ast month’s housing starts (because
of the time lag between the housing start and the replenishment purchase order placed
on the manufaciurer by the supplier), then the model requirgs only observable inputs and
we can make a forecast directly. In contrast, if next month's demand for air conditioners
depends on next month’s average daily temperature, then we must forecast next month’s
temperature before we can predict demand. (Given the quality of long-term weather
forecasts, it is not clear that such a causal model would be of much help, however.)

13.3.2 Time Series Forecasting

To predict a numerical parameter for which past results are a good indicator of future
behavior, but where a strong cause-and-effect relationship is not available for construct-
ing a causal model, a time series model is frequently used. Demand for a product often
falls into this category, and therefore demand forecasting is one of the most common
applications of this technique. The reason is that demand is a function of such factors as
customer appeal, marketing effectivencss, and competition. Although these factors are
difficult to model explicitly, they do tend to persist over time, so past demand is often a
good predictor of future demand. What time series models do is to try to capture past
trends and extrapolate them into the future.

Although there are many different time series models, the basic procedure is the
same for all. We treat time in periods (e.g., months), labeled { = 1, 2,.... 1, where
period ¢ is the most recent data observation to be used in the forecast. We denote the
actual observations by A(j} and let the forecasts for periods ¢ + 7, T = 1, 2,..., be
represented by f(t + t). As shown in Figure 13.3, a time series model takes as input
the past observations A(i),i = 1,...,t (for example, A{i) could represent demand in
month i, where ¢ represents the most recent month for which data are available) and
generates predictions for the future values f{f+1).7 = i,2,...{forexample, f{(r+1)
represents the forecasted demand for month ¢ 4 7, which is months into the future).
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Historical data Forecasis

Ay, i=1,...,t —» | Time Series Model | —» F(+1),t=1.2,...

Toward this end, some madels, including those discussed here, compute a smoothed
estimate F(t}, which represents an estimate of the current position of the process under
consideration, and a smoothed trend T (r), which represents an estimate of the current
trend of the process.

There are many different models that can perform this basic forecasting function;
which is most appropriate depends on the specific application. Here we present four of
the simplest and most common approaches. The moving-average model computes the
forecast for the next period {and thereafter) as the average of the last m observations
{where the user chooses the value of m). Exponential smoothing computes a smoothed
estimate as a weighted average (where the user chooses the weights) of the most recent
observation and the previous smoothed estimate. Like the moving-average model, simple
exponential smoothing assumes no trend (i.e., upward or downward) in the data and
therefore uses the smoothed estimate as the forecast for all future periods. Exponential
smoothing with a linear trend estimates the smoothed estimate in a manner similar
to exponential smoothing, but also computes a smoothed trend, or slope, in the data.
Finally, Winter’s method adds seasonal multipliers to the exponential smoothing with
a linear trend model, in order to represent situations where demand exhibits seasonal
behavior.

Moving Average. The simplest way to convert actual observations to forecasts is to
simply average them. In doing this, we are implicitly assuming that there is no trend, so
that T (t) = O for all £. We then compute the smoothed estimate as the simple average
and use this average for all future forecasts, so that

Fit)y = _—E'ﬂr’u”

fie+n=F@y =12, ...

A potential problem with this approach is that it gives all past data equal weight
regardless of their age. But demand data from three years ago may no longer be rep-
resentative of future expectations. To capture the tendency for more recent data to be
better correlated with future outcomes than old data are, virtually all time series models
contain a mechanism for discounting old data. The simplest procedure for doing this is
to throw data away beyond some point in the past. The time series model that does this
is called the moving-average mode!, and it works in the same way as the simple average
except that only the most recent m data points (where m is a parameter chosen by the
user) are used in the average. Again, the trend is assumed to be zero, so T() =0, and
all future forecasts beyond the present are assumed to be equal to the current smoothed
estimate:

F(f) = Zi=t—m+1 A(f) (133)
m
fe+ny=F@i) t=12... (13.4)

Notice that the choice of m will make a difference in how the moving-average
method performs. A way to find an appropriate value for a particular situation is to try
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various values and see how well they predict already known data. For instance, suppose
we have 20 months of past demand for a particular product, as shown in Table 13.3. At
any time, we can pretend that we only have data up to that point and use our moving
average 1o generate a forecast. If we set m = 3, then in period 1 = 3 we can compute
the smoothed estimate as the average of the first three points, or

| 12
F3) = iﬂ;—t— ~ 11433

Attime 1 = 3, our forecast for demand in period 4 (and beyond, since there is no trend)
is f(4)y = F(3) = 11.33. However, once we actually get to period 4 and make another
observation of actual demand, our estimate becomes the average of the second, third,
and fourth points, or

12412+1
F(4)=—-—+—3~i—1—=11.67

Now our forecast for period 5 (and beyond) is f(5) = F(4) = 11.67. Continuing in
this manner, we can compute what our forecast would have been for¢ =4, ..., 20, as
shown in Figure 13.3. We cannot make forecasts in periods 1, 2, and 3 because we need
three data points before we can compute a three-period moving average.

If we change the number of periods in our moving average to m = 5, we can
compute the smoothed estimate, and therefore the forecast, for periods 6, ..., 20, as
shown in Table 13.3.

Which is better, m = 3 or m = 57 It is rather difficult to tell from Table 13.3.
However, if we plot A{¢) and f (¢), we can see which model's forecast came closer 1o the

TaBLE 13.3 Moving Averages withm =3

andm=2>5
Forecast f{t}
Month Demand
4 Al m=3 m=35
1 10 — —
2 12 — —
3 12 — —
4 i1 11.33 —
5 15 11.67 —
6 14 12.67 12.0
7 i8 13.33 12.8
8 22 15.67 14.0
9 18 18.00 16.0
10 28 19.33 174
11 33 22.67 20.0
12 31 26.33 238
13 31 30.67 264
14 37 31.67 28.2
15 40 33.00 32.0
16 33 36.04 344
17 50 36.67 344
18 45 41.00 38.2
19 55 42.67 41.0
L 20 60 50.00 44.6
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actual observed values. As we see in Figure 3.4, both models tended to underestimate
demand, with the m == 5 model performing worse. The reason for this underestimation
is that the moving-average model assumes no upward or downward trend in the data.
But we can see from the plots that these data clearly have an upward trend. Therefore,
the moving average of past demand tends to be less than future demand. Since the model
with m = 5 is even more heavily tied to past demand (because it includes more, and
therefore older, points), it suffers from this tendency to a greater extent.

This example illustrates the following general conclusions about the moving-average
model:

1. Higher values of m will make the model more stable, but less responsive, to
changes in the process being forecast.

2. The model wilt tend to underestimate parameters with an increasing trend, and
overestimate parameters with a decreasing trend.

We can address the problem of tracking a trend in the context of the moving-average
model. For those familiar with regression analysis, the way this works is to estimate a
slope for the last m data points via linear regression and then make the forecast equal
to the smoothed estimate plus an extrapolation of this linear trend. However, there is
another, easier way to introduce 2 linear trend into a different time series model. Next,
we will pursue this approach after presenting another trendless model below.

Exponential Smoothing. Observe that the moving-average approach gives equal
weight to each of the m most recent observations and no weight to observations older than
these. Another way to discount old data points is to average the current smoothed esti-
mate with the most recent data point. The result will be that the oider the data point, the
smaller the weight it receives in determining the forecast. We call this method exponen-
tial smoothing, and it works as follows. First, we assume, for now, that the trend is always
zero, so T (1) = (. Then we compute the smoothed estimate and forecast at time ¢ as

Fiy=aA@)+ (1 —a)F(t~1) (13.5)
fu+n=F(y 1=12,... (13.6)

where o is a smoothing constant between 0 and 1 chosen by the user. The best value
will depend on the particular data,
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Table 13.4 illustrates the exponential method, using the same dita we used for the
moving average. Unless we start with a historical value for F(0), we cannot make a
forecast for period 1. Although there are various ways to initialize the modei (e.g., by
averaging past observations over some interval), the choice of F(0) will dissipate as time
goes on. Therefore, we choose to use the simplest possible initialization method and set
F{1) = A(1) = 10 and start the process. Attime { = 1, our forecast for period 2 (and
beyond) is f{2) = F(1) = 10. When we reach period 2 and observe that A(2) = 12,
we update our smoothed estimate as follows:

Fy =AY+ (1 -} FH =022 4+ (1 - 0.2){10) = 10.40

Our forecast for period 3 and beyond is now f(3) = F(2) = 10.40. We can continue
in this manner to generate the remaining f(f) values in Table 13.4.

Notice in Table 13.4 that when we use ¢ = 0.6 instead of & = 0.2, the forecasts are
much more sensitive to each new data point. For instance, in period 2, when demand
increased from 10 to 12, the forecast using @ = 0.2 only increased to 10.40, while the
forecast using & = 0.6 increased to 11.20. This increased sensitivity may be good, if
the model is tracking a real trend in the data, or bad, if it is overreacting to an unusual
observation. Hence, analogous to our observations about the moving-average method,
we can make the following points about single exponential smoothing:

1. Lower values of o will make the model more stable, but less responsive, to
changes in the process being forecast.

2. The model will tend to underestimate parameters with an increasing trend, and
overestimate parameters with a decreasing trend.

TamLE 13.4 Exponential Smoothing with @ = 0.2

and « = 0.6
Forecast f(f)
Month Demand
t Al a=190.2 o =10
1 10 — —
2 12 10.00 10.00
3 12 10,40 11.20
4 11 172 11.68
5 15 10.78 11.27
6 14 11.62 13.51
7 18 1210 13.80
3 22 13.28 16.32
g 18 15.02 19.73
10 28 15.62 18.69
11 33 18.09 24.28
12 31 21.08 29.51
13 31 23.060 30.40
14 37 24.65 30.76
15 40 2742 34.50
16 13 29.69 37.80
17 50 30.36 3492
18 45 3428 43,97
19 55 36.43 44.59
20 60 40.14 50.83
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Choosing the appropriate smoothing constant & for exponential smoothing, like
choosing the appropriate value of m for the moving-average method, requires a bit of
trial and error. Typically, the best we can do is to try various values of « and see which
one generates forceasts that match the historical data best. For instance, Figure 13.5
plots exponential smoothing forecasts f(r), using & = 0.2 and 0.6, along with actual
values A(z). This plot clearly shows that the values generated using o = 0.6 are closer
to the actual data points than those generated using « = 0.2. The increased sensitivity
caused by using a high & value enabled the model to track the obvious upward wend of
the data. However, because the single exponential smoothing model does not explicitly
assume the existence of a trend, both sets of forecasts tended to lag behind the actual
data.

Exponential Smoothing with a Linear Trend.  We now turn to a model that is specif-
ically designed to track data with upward or downward trends. For simplicity, the model
assumes the trend is linear. That is, our forecasts from the present out into the future
will follow a straight line. Of course, each time we receive 4 new observation, we will
update the slope of this line, so the method can track data that change in a nonlinear
fashion, although less accurately than data with a trend that is generally linear.

The basic method updates a smoothed estimate F(7) and a smoothed trend T (1)
each time a new observation becomes available. Using these, the forecast for 7 periods
into the future, denoted by f(r + t), is computed as the smoothed estimate plus times
the smoothed trend. The equations for deing this are as foliows:

Fit)=aAWt)+{(1 —a)[Ft - D+ T —-1)] (137
Tiy=plF) - Fe—-D}+ 0 -8/T¢-1) {13.8)
fu+n=Fn+TQe) (13.9)

where o and # are smeothing constants between 0 and 1 to be chosen by the user.

Notice that the equation for computing F (1) is slightly different from that for expo-
nential smoothing without a linear trend. The reason is that at period ¢ — 1 the forecast
for period ¢ is given by F(z - )+ 7 (r —1) (i.e., weneed to add the trend for one period).
Therefore, when we compute the weighted average of A(¢} and the current forecast, we
must use Fit — 1) + T(¢ — 1) as the current forecast.
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We update the trend in Equation (13.8) by computing a weighted average between the
lagt smoothed trend (¢ — 1) and the most recent estimate of the trend, which is compuied
as the difference between the two most recent smoothed estimates, or F{¢) — F{t — 1),
The F(tr) — F{t — 1) term is like a slope. By giving this stope a weight of 8 (less than
one), we smooth our estimate of the trend to avoid overreacting to sudden changes in
the data.

As in simple expenential smoothing, we must initialize the mode] before we can
begin. We could do this by using historical data to estimate F(0) and T(0). However,
the simplest initialization method is to set F(1) = A(1} and T(1) = 0. We illustrate
the exponential smoothing with linear trend method using this initialization procedure,
the demand data from Table 13.4, and smoothing constants ¢ = 0.2 and 8 = 0.2. For
nstance,

FR=aAD) + (1 —a)[F(1}+ 7T(1)] =0.2(12) + (1 - 0.2){(10 4+ 0) = 10.4
T = BIFR)~ FH]+ (1 - AT =0.2(104 — 10) + (1 — 0.2X0) = 0,08
The remainder of the calculations are given in Table 13.5.

Figure 13.6 plots the forecast values f () and the actual values A{#) from Table 13.5
and plots the forecast that results from using o = 0.3 and 8 = 0.5. Notice that these
forecasts track these data much better than either the moving average or exponential
smoothing without a linear trend. The linear trend enables this method to wack the
upward trend in these data quite effectively. Additionally, it appears that using smoothing
coefficients & = 0.3 and § = 0.5 results in better forecasts than using & = 0.2 and
B = 0.2, Next, we will discuss how to choose smoothing constants later in this section.

TasLE 13.5 Exponential Smoothing with s Linear Trend, o« = 0.2

and ﬂ = 0.2
Month Demand Smoothed Estimate Smoothed Trend Forecast
£ AiD Fit) T{z) fiy
1 10 10.00 0.00 —
2 12 1G.40 0.08 10.00
3 12 10.78 0.14 10.48
4 11 10.94 0.14 10.92
5 15 11.87 0.30 11.08
6 14 {2.53 0.37 12.17
7 18 13.93 0.58 1291
8 22 16.00 (.88 14.50
9 13 17.10 .92 16.88
10 28 20.02 1.32 18.03
11 33 23.67 1.79 21.34
12 31 26.57 2.01 25.46
13 31 25.06 2.11 2R.58
14 37 32.33 2.34 31.17
15 40 35.74 2.55 34.67
16 33 37.23 2.34 38.29
17 50 41.66 276 39.57
18 45 44.53 2.78 44,42
19 55 48.85 3.09 47.31
20 60 53.35 341 51.94




FIGURE 13.6

Exponential smoothing
with linear trend
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The Winters Method for Seasonality,. Many products exhibit seasonal demand. For
instance, lawn mowers, ice cream, and air conditioners have peaks associated with
summer, while snow blowers, weather stripping, and furnaces have winter peaks. When
this is the case, the above forecusting models will not work well because they will interpret
seasonal rises in demand as permanent rises and thereby will overshoot actual demand
when it declines in the off season. Likewise, they will interpret the low off-season
demand as permanent and wil} undershoot actual demand during the peak season.

A natural way 1o build seasonality into a forecasting model was suggested by Win-
ters (1960). The basic idea is 10 estimate a multiplicative seasonality factor e(t), r =
1,2, ..., where ¢(t) represents the ratio of demand during period ¢ to the average de-
mand during the season. Therefore, if there are & periods in the season (for example,
N = 12 if periods are months and the season is 1 year), then the sum of the c(1) factors
over the season will always be equal to N. The seasonally adjusted forecast is computed
by multiplying the forecast from the exponential smoothing with linear trend model (that
is, F(£} + tT (1)) by the appropriate seasonality factor. The equations for doing this are
as follows:

Al
F(t) —a— — —+ (1 =a)[Ft = 1) + Tt = D} 13.10)
c(t —N)
T =RIFO —Fi - DI+ (1 -/OHT¢-1 (13.11)
A0 _ _
ety = Yoy + (1= y)clt — N) (13.12)
Fu+ty=[F@) +1T())c(t) (13.13)

where a, B, and y are smoothing constants between 0 and 1 to be chosen by the user.
Notice that Equations (13.10) and (13.11) are identical to Equations (13.7) and (13.8) for
computing the smoothed estimate and smoothed trend in the exponential smoothing with
linear trend model, except that the actual observation A(¢) is scaled by dividing by the
seasonality factor c{ — N). This normalizes all the observations relative to the average
and hence places the smoothed estimate and trend in units of average (nonseasonal)
demand. Equation (13.12) uses exponential smoothing to update the seasonality factor
¢(t) as a weighted average of this season’s ratio of actual demand to smoothed estimate
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TasLE 13.6 ‘The Winters Method for Forecasting with Seasonality

Time Actual Smoothed Smoothed  Seasonal
Pericd  Demand Estimate Trend Factor Forecast
Year Month t Alr) F(t) T () (2} F{0)
1597 Jan 1 4 —_ — 0,480
Feb 2 2 - —_ 0.240
Mar 3 5 —_ — 0.600
Apr 4 8 — —_ (.960
May 5 11 — — 1.320
n -— J—
Ju ) 6 13 1.560
Jul 7 18 — — 2.160
Aug 8 15 — — 1.800
Sep 9 g — — 1.0R0
Oct 10 6 — — 0.720
Nov 11 5 — (.600
Dec 12 £ 8.33 0.00 0.480
1998 Jan 13 S 8.54 0.02 0.491 4.00
Feb 14 3 937 .10 0.259 2.06
Mar 15 7 3.69 0.12 0.612 5.68
Apr 16 7 9.57 0.10 0.937 9.43
May 17 15 9.83 0.12 1.341 12,76
Jun 18 17 10.04 .13 1.573 15.52
Jul 19 24 10,26 0.13 2.178 21.97
Aug 20 13 10.36 0.13 1.794 18.72
Sep 21 12 16.55 0.14 1.086 11.33
Qct 22 7 10.59 0.13 0.714 7.69
Nov 23 b 10,98 0.15 0.613 6.43
Dec 24 & 11.27 017 0485 5.34

A{t)/ F(r) and last season’s factor c(r — N). To make the forecast in seasonal units, we
multiply the nonseasonal torecast F (1) + tT(1) by the seasonality factor ¢(2).

We illustrate the Winters method with the example in Table 13.6. To initialize
the procedure, we require 2 full season of seasonality factors plus an initial smoathed
estimate and smoothed trend. The simplest way to do this is to use the first season of
data to compute these initial parameters and then use the above equations to update them
with additional seasons of data. Specifically, we simply set the smoothed estimate to be
the average of the first seasons of data

N
F(N) = ___E,j(ﬁ(f) (13.14)
So, in our example, we can compute the smoothed estimate as of December 1998 to be

2 AD _ 4+2+---+4
12 - 12
Since we are starting with only a single season of data, we have no basis for estimating

a trend, so we will assume initially that the trend is zero, so that T (N y=T(12) == 0.
The model will quickly update the trend as seasons are added.! Finally, we compute

F(12) = =8.33

L Alternatively, ene could use multiple seasons of data to initialize the model and estimate the trend from
these (see Silver, Pyke, and Pererson 1998 for a method).
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initial seasonality factors as the ratio of actual demand to average demand during the
first season:

A _ AL
SN AQYN  F(N)
For instance, in our example, the initial seasonality factor for January is

(1) = Ad) = A = 0.480
F(12) 833
Once we have computed values for F(N), T(N},and e(1}, ..., c(N}, we can begin
the smoothing procedure. The smoothed estimate for January 1998 is computed as
A(13)

F(13) = am + (1 —a)[F(12) + T(12)]

5
=01 — — 0 . = 8.
(0.480) +(1—-0.1)8334+0) =854

c(iy = (13.15

The smoothed trend is
T(13) = BIF(13)—~ F(I2)] +(1 - BT (12) = 0.1(8.54 - 8.33) + (1 - 0. 1)(0) = 0.02
The updated seasonality factor for January is

(1) = A(13)+ 1 1) =0.1 > 1 —0.1){0.48) = 0.491
¢ )*y”m ( y)ct)—-(8_54)+( 1)(0.48) = 0.

The computations continue in this manner, resulting in the numbers shown in Table
13.6. We plot the actual and forecasted demand in Figure 13.7. In this cxample, the
Winters method works very well, The primary reason is that the seasonal spike in 1998
had a similar shape to that in 1997. That is, the proportion of total annual demand that
occurred in a given month, such as July, is fairly constant across years. Hence, the
seasonality factors provide a good fit to the seasonal behavior. The fact that total annual
demand is growing, which is accounted for by the positive trend in the model, results
in an appropriately amplified seasonal spike in the second year. In general, the Winters
method gives reasonable performance for seasonal forecasting where the shape of the
seasonality does not vary too much from season to season.
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Adjusting Ferecasting Parameters.  All the time series models discussed involve ad-
Jjustable coefficients (for example, m in the moving-average model and ¢ in the exponen-
tial smoothing model), which must be “tuned” to the data to yield a suitable forecasting
model. Indeed, we saw in Figure 13.6 that adjusting the smoothing coefficients can
substantially affect the accuracy of a forecasting model. We now turn to the question of
how to find good coefficients for a given forecasting situation.

The first step in developing a forecasting model is to plot the data. This will help us
decide whether the data appear predictable at all, whether a trend seems to be present,
or whether seasonality seems to be a factor. Once we have chosen a model, we can plot
the forecast versus actual past data for various sets of parameters to see how the model
behaves. However, o find a good set of coefficients, it is helpful to be more precise
about measuring model accuracy.

The three most common guantitative measures for evaluating forecasting models are
the mean absolute deviation (MAD), mean square devigtion (MSD), and bias (BIAS).
Each of these takes the differences between the forecast and actual values, f(t) — A(t),
and computes a numerical score. The specific formulas for these are as follows:

MAD = Lo 'ﬂ: —AW (13.16)
" _ 2

MSD = ’=‘[f(2 AW®)] (1317

BIAS = __.EM (13.18)

Both MAD and MSD can only be positive, so the objective is to find model coef-
ficients that make them as small as possible. BIAS can be positive, indicating that the
forecast tends to overestimate the actual data, or negative, indicating that the forecast
tends to underestimate the actual data. The objective, then, is to find coefficients that
make BIAS close to zero. However, note that zero BIAS does not mean that the forecast
is accurate, only that the errors tend to be balanced high and low. Hence, one would
never use BIAS alone to evaluate a forecasting model.

To illustrate how these measures might be used to select model coefficients, let us
return to the expouential smoothing with linear trend model as applied to the demand
data in Table 13.5. Table 13.7 reports the values of MAD, MSD, and BIAS for various
combinations of o and #. From this table, it appears that the combination @ = 0.3,
B = 0.5 works well with regard to minimizing MAD and MSD, but that a = 0.6,
£ = 0.6 is better with regard to minimizing BIAS. In general, it is unlikely that any
set of coefficients will be best with regard to all three measures of effectiveness. In this
specific case, as can be seen in Figure 13.6, the actual data not only have an upward
wend, but alse tend to increase according to a nonlinear curve (i.e., the curve has a sort
of parabolic shape). This nonlinear shape causes the model with a linear trend to lag
slightly behind the data, resulting in a negative BIAS. Higher values of @ and 8 give
the new observations more weight and thereby cause the model to track this upward
swing more rapidly. This reduces BIAS. However, they also cause it to overshoot the
occasional downward dip in the data, increasing MAD and MSD.

Table 13.7 shows that the model with @ = 0.3, 8 = 0.5 has significantly smaller
MSD than the model with our original choice of @ = 0.2, § = 0.2. This means that it
fits the past data more closely, as illustrated in Figure 13.6. Since our basic assumption
in using a time series forecasting model is that future data will behave similarly to past
data, we should set the coefficients to provide a good fit to past data and then use these
fot future forecasting purposes.
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TaBLE 11,7 Exponentisl Smeocthing with Linear Trend
for Various o and 8

o g | MAD MSD BIAS o 8 | MAD MSD BIAS

01 0111023 14694 1023 § 04 01 430 30,14 =345
0.1 02 8.27 95.31 -827 || 04 02 389 2378 234
0.1 03 6.83 64.91 669 || 04 03| 377 2225 177
061 04 5.83 4717 —543 || 04 04 375 2211 —146
61 05 5.16 3688 —442 {04 05| 376 2236 —1.29
o1 06 4.69 3091 -362 ]| 04 06 | 379 2267 -L18
02 0.1 6.48 60.55 —6.29 || 05 0.1 413 2740 -—2.84
02 02 5.04 37.04 —444 || 05 021 391 2361 194
02 03 4.26 27.56 —320 L 05 03| 38 2302 149
02 04 3.90 23.75 -251 05 04| 350 2326 125
02 05 373 2232 =202 || 05 05 394 2373 -110
; 02 06 3.65 2194 171 || 05 06| 397 2427 -—1.00
03 0.1 498 3781 —445 || 06 0.1 412 268 242
03 02 4.11 26.30 —303 06 02| 403 2463 —1.66
03 03 382 274 —223 || 06 03| 404 2469 -1.29
' 63 04 3.606 2181 —177 || 06 04 409 2535 —1.08
03 05 3.65 21.7% —152 || 06 05| 414 2625 —095
03 06 3.68 22.06 -138 1 06 06| 412} 2729 084

The enumeration offered in Table 13.7 is given here to illustrate the impact of
changing smoothing coetficients, However, in practice we do not have to use a trial-and-
error approach to search for a good set of smoothing coefficients. Instead, we can use
the internal optimization tool, Solver, that is included in Excel to do the search for us
(see Chapter 16 for details on Solver). If we set up Solver to search for the values of o
and B that (1) are between zere and one and (2) minimize MSD in the previous example,
we obtain the solution @ = 0.284, 8 = 0.467, which attains an MSD value of 21.73.
This is slightly better than the & = (.3, 8 = 0.5 solution we obtained by brate-force
searching, and much faster to obtain.

Notice that in our discussion of choosing smoothing coefficients we have compared
the forecast tor one period into the future (i.e., the lag-1 forecast) with the actual value.
However, in practice, we frequently need to forecast further into the future. For instance,
if we are using a demand forecast o determine how much raw material to procure, we
may need to forecast several months into the future (e.g., we may require the lag-t
forecast), When this is the case, we should use the formulas to compute the forecast
for t periods from now f(t + 7} and compare this to the actual value A(r + 1) when it
occurs. The model parameters should be therefore chosen with the goal of minimizing
the deviations between f(r + ) and A(r + 7), and MAD, MSD, and BIAS should be
defined accordingly.

13.3.3 The Art of Forecasting

The regression model for causal forecasting and the four time series models are represen-
tative of the vast number of quantitative tools available to assist the forecasting function.
Many others exist (see Box and Jenkins (1970) for an overview of more sophisticated
time series models). Clearly, forecasting is an area in which quantitative models can be
of great value.
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However, forecasting is more than a matter of selecting a model and tinkering with its
parameters to make it as effective as possible. No model can incorporate all factors that
could be relevant in anticipating the future. Therefore, in any forecasting environment,
situations will arise in which the forecaster must override the quantitative model with
qualitative information. For instance. if there is reason 1o expect an impending jump in
demand (e.g., because a competitor’s ptant is scheduled to shut down), the forecaster
may need to augment the quantitative model with this information, Aflthough there is
ne substitute for experience and insight, it is a good idea to occasionally look back at
past forecasting experience o see what information could have been used to improve the
forecast. We won’'t be able to predict the future precisely, but we may be able to avoid
some future blunders.

134 Planning for Pull

A jogical and customary way to break the production planning and control (PPC)
problem into manageable pieces is to construct a hierarchical planning framework. We
illustrated a rypical MRP Il hierarchy in Figuce 3.2. However, that framework was based
on the basic MRP push job release mechanism. As we saw in our discussion of JIT in
Chapter 4 and ous comparison of push und pull in Chapter 10, pull systems offer many
potential benefits over push systcms. Briefly, pull systems are

1. More efficient, in that they can attain the same throughput as a push system
with less average WIP.

2. Easier 1o control, since they rely on setting (easily observable) WIP levels,
rather than release rates as do push systems.

3. More robust, since the performance of a pull system is degraded much less by
an erTor i W1P level than is a push system by a comparable percentage of errot
in release rate.

4. More supportive of improving guality, since low WIP levels in pull systems

both require high quality (to prevent disruptions) and facilitate it (by shortening
queues and guickening detection of defects).

These benefits urge us to incorporate aspects of pull into our manufacturing control
systems. Unfortunately, from a planning perspective, there is a drawback to pull. Pull
systemns are inherently rafe-driven, in that we fix the level of WIP and let them run.
Capacity buffers (e.g., preventive maintenance periods available to be used for overtime
between shifts) are used to facilitate a very steady pace, which in turn requires highly
stable demand. To achieve this, the JIT literature places considerable emphasis on
producticn smoothing.

While a rate-driven system is logistically appealing, it is not necessarily well suited
to planning. There is no natural link to customer due dates in a pull system. Customers
“pull” what they need, and signals (cards or whatever) trigger replenishments. But until
the demands actually occur, the system offers us no information about them. Hence,
a pull system provides no inherent mechanism for planning raw material procurement,
staffing, opportunities for machine maintenance, etc.

In contrast, as we noted in Chapter 5, push systems can be logistical nightmares, but
are extremely well suited to planning. There is a simple and direct link between customer
due dates and order releases in a push system. For instance, in a lot-for-lot MRP system,
the planned order releases are the customer requirements (only time-phased accerding
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The conveyor model of a
production line
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to production fead times). If only the infinite-capacity assumption of MRP did not
make these lead times largeiy fictional, we could use them to drive all sorts of planning
modules. Indeed, this is precisely what MRP 1 systems do.

The question then is, Can we obtain the logistical benefits of pull and stili develop
a coherent planning structure? We think the answer is yes. But the mechanism for
linking a rate-based pull system with due dates is necessarily more complex than the
stmple time phasing of MRP. The simplest link we know of is the conveyor model of
a pull production Yne or facility, depicted in Figure 13.8 and upon which we will rely
extensively in subsequent chapters.

The conveyor model is based on the observation that a pull system maintains a fairly
steady WIP level, so the speed of the line and the time to traverse it are relatively constant
over time. This allows us to characterize a production line with two parameters: the
practical production rate ] and the minimusa practical lead time T . These serve
the same functions as, but are somewhat different from, the bottleneck rate r; and the
raw process time 7p of the line as defined in Chapter 7, and their ideal realizations ry
and 7 introduced in Chapter 9. Unlike the bottleneck rate, the practical production rate
is the anticipated throughput of the line. This rate can also be standardized according
to part complexity (e.g., we could count parts in units of hours of work at a bottleneck
process). Thus, since rp is the capacity of the line, we expect r,;" < ry with utilization
u = rl /rp. Likewise, T is the practical minimum (i.e., no queuveing) practical time to
traverse the line. This will include detractors for short-term disruptions, such as setups
and routine machine faitures along with routine watting to move and any other delays
that do not invoive queueing. Consequendy, T > T.

Using Little’s law, we see that the CONWIP level W must be

_.P P
W=r, xT,

We ¢an now usc the conveyor model to predict when jobs will be completed by a
line or process center. For instance, suppose we release a job into the line when there
are already n jobs waiting in gueue to be admitted into the CONWIP line (.e., waiting
for a space on the conveyor). The time until the job will be completed £ is given by

£=‘£1;»'+To‘°=n+pw
s s

For example, suppose the conveyor depicted in Figure 13.8 represents a cireuit
board assembly Jine. The line runs at an average rate of rf = 2 jobs per hour, where a
job consists of a standard-size container of circuit boards. Once started, a job takes an
average of 77 = 8 hours to finish. A new job that finds n = 3 jobs waiting to released

into the line (i.e., waiting for CONWIP authorization signals) will be completed in

(13.19)

3
€=-n—+TGPz£+8=9.5hours

rp
on average. We revisit this problem, adding variability to the production rate in Chapter
15 where we further refine the conveyor model.
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Being able to estimate output times of specific jobs allows us to address a host of
planning problems:

1. If sales personnel have a means of keeping track of factory loading, they could
use the conveyor modet! to predict how long new orders will require to fill and
therefore will be able to quote reasonable due dates to customers.

2. If we keep track of how the system will evolye (i.e., what jobs will be in the line
and what jobs will be waiting in queue) over time, we can “simulate” the
performance of a line. This would provide the basis for a “what if” tool for
anatyzing the effects of different priority rules or capacity decisions on outputs.
As we noted in Chapter 3, capacity requirernents planning (CRP) attempts such
an analysis. However, as we pointed out there, CRP uses an infinite-capacity
model that invalidates predictions beyond any point where a resource becomes
fully loaded. More sophisticated, finite-capacity models for making such
predictions have begun to appear on the market. While more accurate than
CRP, finite models frequently have massive data needs and complex
computations akin 1o those used in discrete event simulation models. The
conveyor model can simplify both data requirements and computation, as we
will discuss in various contexts throughout Part ITI.

3. We can use the conveyor model to determine whether completions will satisfy
customer due dates to develop an optimization model for setting job release
times. We will do this in Chapter 15 to generate a finite-capacity scheduling
tool.

By addressing these and other problems, the conveyor model can provide the linch-
pin of a planning framework for pull production systems. Where lines are simple enongh
to invoke it directly, it can be a powerful integrating tool. We give an outline of a frame-
work that can exploit this integration. We will fill in the details and discuss generaliza-
tiens to situations in which the conveyor model is overly stmplistic in the remainder of
Part III,

13.5 Hierarchical Production Planning

With the conveyor model to predict job completions, we can develop a hierarchical
production planning and control (PPC) framework for pull production systems. Fig-
ure 13.9 illustrates such a hierarchy, spanning from long-term strategic issues at the top
levels to short-term control issues at the bottom levels.

Each rectangular box in Figure 13.9 represents a separate decision problem and
hence a planning module.” The rounded rectangular boxes represent outputs from
modules, many of which are used as inputs in other modules. The oval boxes represent
inputs to modules that are generated outside this planning hierarchy (e.g., by marketing
or engineering design). Finally, the arrows indicate the inferdependence of the modules.

The PPC hierarchy is divided into three basic levels, corresponding to long-term
(strategy), intermediate-term {(tactics), and short-term (control) planning. Of course,
from a corporate perspective, there are levels above those shown in Figure 13.9, such
as product development and business planning. Certainly these are important business

I%We use the term module to represent the combination of analytic models, computer tools, and human
judgment used to address the individual planning problems. As such, they are never fully automated, nor
shoald they be.
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strategy decisions, and their interaction with the manufacturing function deserves serious
consideration. Indeed, it is our hope that readers whose carecrs take them outside of
manufacturing will actively pursue opportunities for greater integration of manufacturing
issues into these areas. However, we will adhere to our focus on operations and assume
that business strategy decistons, such as what business to be in and the nature of the
product designs, have already been made. Therefore, when we speak of strategy, we are
referring to plant strutegy. which is only part of an overall business strategy.

The basic function of the long-term strategic planning tools shown in Figure 13.9
is to establish a production environment capable of meeting the plant’s overall goals,
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At the plant level, this begins with a forecasting module that takes marketing infor-
mation and generates a torecast of future demand, possibly using a quantitative model
like those we discussed previously, A capacity/facility planning module uses these de-
mand forecasts, along with descriptions of process requirements for making the various
products, to determine the needs for physical equipment. Analogously, a workforce
planning module uses dermand forecasts to generate a personnel plan for hiring, firing,
training, etc., in accordance with company labor policies. Using the demand forecast,
the capacity/facilities plan. and the labor plan, aleng with various economic parameters
{(material costs, wages, vendoring costs, etc.), the aggregate planning module makes
rough predictions about future production mix and volume. The aggregate plan can also
address other related 1ssues. such as which parts to make in-house and which to contract
out to external suppliers, and whether adjustments are needed in the personnel plan.

The intermediate tactical toels in Figure 13.9 take the long-range plans from the
strategic level, along with information about customer orders, (o generate a general plan
of action that will help the plant prepare for upcoming production (by procuring materials,
lining up subcontractors, cte.). A WIP/quota-setting module works to translate the
aggregate plan into card counts and periodic production quotas required by a pull system.
The production quotas form part of the master production schedule (MPS), which is
based on the forecast demands as processed by the aggregate planning moduje. The
MPS also contains firm customer orders, which are suitably smoothed for use in a
pull production system by the demand management module. The sequencing and
scheduling module transiates the MPS into a work schedule that dictates what is to be
worked on in the near term, for example. the next week, day, or shift,

The low-level tools in Figure 13.9 directly control the plant. The shop floor control
module controls the real-time flow of material through the plant in accordance with this
schedule, while the production tracking module measures actual progress against the
schedule. In Figure 13.9, the production tracking module is also shown as serving a
secand useful function, that of feeding back information (e.g., capacity data) for use by
other planning modules. Finally, the PPC hierarchy includes a real-time simulation
module, which allows examination of what-if scenarios, such as what will happen if
certain jobs are made “hot.”

in the following sections, we discuss in overview fashion the issues involved at
each level and the integrative philosophy for this PPC hierarchy. In this discussion, we
will proceed top-down. since this helps highlight the interactions between levels, In
subsequent chapters, we will provide details of how to construct the individual modules,
There we will proceed bottom-up, in order to emphasize the relationship of each planning
problem to the actual production process.

13.5.1 Capacity/Facility Planning

Once we have a forecast of future demand, and have made the strategic decision 1o atternpt
to fill it, we must ensure that we have adequate physical capacity. This is the function of
the capacity/facility planning module depicted in Figure 13.9. The basic decisions to
be made regarding capacity concern how much and what kind of equipment to purchase.
Naturally, this includes the actual machines used to make components and final products.
But it also extends to other tacilily issues related to the support of these machings, such as
factory floor space, power supplics, aitfwatcr/chemical supplies, spare-parts inventories,
material handiing systems, W1P and FGI storage, and staffing levels.

Jssues that can be considered in the capacity/facility planning process include the
following:
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1. Product lifetimes, The decisions of what type and how much capacity to install
depend on how long we anticipate making the product. Inrecent years, product lifetimes
have become significantly shorter, to the point where they are frequently shorter than the
physical life of the equipment. This means that the equipment must either pay for itself
during the product lifetime or be sufficiently flexible to be used to manufacture other
future products. Because it 1s often difficult to predict with any degree of confidence
what future products will be, quantifying the benefits of flexibility is not easy. But it can
be one of the most important aspects of facility planning, since a flexible plant that can
be swiftly “tooled up” to produce new products can be a potent strategic weapon.

2. Vendoring options. Before the characterization of the nature of the equipment to
install, a “make or buy” decision must be made, for the finished product and its subcom-
ponents. While this is a complex issue that we cannot hope to cover comprehensively
here, we offer some observations.

@ This make-or-buy decision should not be made on cost alone, Outsourcing a
product because it appears that the unit cost of the vendor is lower than the (fully
loaded) unit cost of making it in-house can be risky. Because unit costs depend
strongly on the manner in which overhead allocation is done, a decision that seems
locally rational may be globally disastrous. For example, a product that is
outsourced because its unit cost is higher than the price offered by an outside
supplier may not eliminate many of the overhead costs that were factored into its
unit cost. Hence, these costs must be spread over the remaining products
manufactured in-house, causing their unit costs to increase and making them more
attractive candidates for outsourcing. There are examples of firms that have fallen
into a virtual “death spiral” of repeated rounds of cutsourcing on the basis of unit
cost comparisens. In addition to the economic issues associated with outsourcing,
there are other benefits to in-house production, such as learning effects, the ability to
controt one’s own destiny. and tighter control over the scheduling process, that are
not captured by a simple cost comparison.

# Consideration should be given to the long term in make-or-buy decisions.
We have seen companies evolve from manufacturing into distribution/service
through a sequence of outsourcing decisions. While this is not necessarily a bad
transition, it is certainly one that should nat be made without a full awareness of the
consequences and careful consideration of the viability of the firm in the
marketplace as a nonmanufacturing entity. :

¢. When the make-or-buy decision concerns whether or not to make the product
at all, then it is clearty a capacity planning decision. However, many
manufacturing managers find it attractive to vendor a portion of the volume of
certain products they have the capability to make in-house. Such vendoring can
augment capacity and smooth the load on the plant. Since the decision of which
products and how much volume to vendor depends on capacity and planned
production, this is a guestion that spills over into the aggregate planning module, in
which long-term production planning is done. We will discuss this problem in
greater detail later and in Chapter 16. From a high-level strategic perspective, it is
important to remember that giving business to outside vendors enables them to
breed capabilities that may make them into competitors some day. We offer the
example of IBM using Microsoft to supply the operating system for its personal
computers as one example of what can happen.
3. Pricing. We have tried to ignore pricing as mugh as possible in this book, since
it is a factor over which plants generally have little influence. However, in capacity de-
cisions, a valid economic analysis simply cannot be done without some sort of forecast
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of prices. We need 1o know how much revenue will be generated by sales in order to
determine whether a particular equipment configuration is economically justified. Be-
cause prices are frequently subject to great uncertainty, this is an area in which sensitivity
analysis is critical.

4, Time value of money. Typically, capacity increases and equipment ifnprove-
ments are made as capital requisitions and then depreciated over time. Interest rate
and depreciation schedule, therefore, can have a significant impact on the choice of
equiprnent.

5. Reliability and maintainability. As we discussed in Pant 11, reliability (e.g.,
mean time to failore (MTTF)) and maintainability (e.g., mean time to repair (MTTR))
are important determinants of capacity. Recall that availability A (the fraction of time a
machinc is working) 1s given by

_ MTTF
" MTTF + MTTR

Obviously, all things being equal, we want MTTF to be big and MTTR to be small. But
all things are never equal, as we point cut in the next two observations.

6. Bottleneck effects. As should be clear from the discussions in Part I, capacity
increases at bottleneck resources typically have a much larger effect on throughput than
increases at nonbottleneck resources. Thus, it would seem that paying extra for high-
speed or high-availability machines is likely to be most attractive at a bottleneck resource.
However, aside from the fact thal a stable, distinct bottleneck may not exist, there are
problems with this overly simple reasoning, as we point out in the next observation.

7. Congestion effects. The single most neglected factor in capacity analysis, as
it is practiced in American industry today, is variability, As we saw again and again
in Part II, variability degrades performance. The variability of machines, which is
substantially affected by failures, is an important determinant of throughput. When
variability is considered, reliability and maintainability can become important factors at
nonbottleneck resources as well as at the bottleneck.

A

We will discuss the capacity/facility analysis problem in greater detail in Chapter
18. For now, we point out that it should be done with an eye toward long-term strategic
concerns and should explicitly consider variability at some level. In terms of our hier-
archical planning structure, the output of a capacity planning exercise is a forecast of
the physical capacity of the plant over a horizon at least long enough for the purposes of
aggregate planning—typically on the order of two years,

13.5.2 Workforce Planning

As the capacity/facility planning module in Figure 13.9 determines what equipment is
needed, the workforce planning module analogousty determines what workiorce is
needed to support production. Both planning problems invalve Jong-term issues, since
neither the physical plant nor the workforce can be radically adjusted in the near term.
So both planning modules work with long-range forecasts of demand and try to construct
an environment that can achieve the system'’s goals. Of course, the actual sequence of
events never matches the plan exactly, so both long-term capacity/facility and workforce
plans are subject to short-term modification over time.

The basic workforce issues to be addressed over the long term concern how much
and what kind of Jabor to make available. These questions must be answered within the
constraints imposed by corporate labor policies. For instance, in plants with unionized
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labor, labor contracts may restrict who can be hired or laid off, what tasks different labor
classifications can be assigned, and what hours people can work. Usually, management
spends far more time hammering out the details of such agreements with labor than with
determining what labor is required to support a long-term production plar. Although
careful use of the workforce planning module cannot undo years of management-labor
conflict, it can help both sides focus on issues that are of strategic importance to the firm.

At the root of most long-term workforce planning is a set of estimates of the standard
hours of labor required by the products made by the plant. For example, a commercial
vent hood might require 20 minutes (one-third hour) of a welder’s time to assemble. If
a welder is available 36 hours per week, then one welder has the capacity to produce
36 x 3 = 108 vent hoods per week. Thus, a production plan that calls for 340 vent hoods
per week requires five welders.

Simple standard labor hour conversions can be 4 useful starting point for a workforce
planning module. However, they fall far short of a complete representation of the issues
involved in workforce planning, These issues include the following:

1. Worker availability. Estimates of standard labor hours must be sophisticated
enough to account for breaks, vacations, training, and other factors that reduce worker
availability. Many firms set “inflation factors” for converting the number of workers
directly needed to the number of “onboard” workers. For instance, a multiplier of 1.4
would mean that 14 workers must be employed in order to have the equivalent of 10
directly on the jobs at alt times during a given shift.

2. Workforce stability. Although production requirements may move up and down
suddenly, it is generally neither possible nor desirable torapidly increase and decrease the
size of the workforce. A firm's ability to recruit qualified people, as well as its overall
workplace attitude, can be strongly affected by changes in the size of the workforce.
Some of these “softer issues” are difficult to incorparate into models but are absolutely
critical to maintenance of a productive workforce.

3, Employee training. Training new recruits costs money and takes the time of
current employees. In addition, inexperienced workers require time to reach full pro-
ductivity. These considerations argue against sudden large increases in the workforce.
However, when growth requires rapid expansion of the workforce, concerted efforts are
needed to maintain the corporate culture (i.e., whatever it was that made growth occur
in the first place).

4. Short-term flexibility. A workforce is described by more than head count.
The degree of cross-training among workers is an important determinant of a plant’s
flexibility (its ability to respond to shost-term changes in product mix and volume). Thus,
workforce planning needs to look beyond the production plan to consider the unplanned
contingencies {emergency customer orders, runaway success of a new product) with
which the system should be able to cope.

5. Long-term agility. The standard labor hours approach views labor as simply
another input to products, along with material and capital equipment. But workers
represent more than this. In the current era, where products and processes are constantly
changing, the workforce is a key source of agility (the plant’s ability to rapidly reconfigure

a manufacturing system for efficient production of new products as they are introduced).
So-called agile manufacturing is largely dependent on its people, both managers and
workers, to learn and evolve with change.

6. Quality improvement. As we noted in Chapter 12, quality, both internal and
external, is the result of a number of factors, many under the direct control of workers.
Educating machine operators in quality control methods, cross-training workers so that
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they develop a sysiemwide appreciation of the quality implications of their actions, and
moderating the influx of new employees so that a corporate consciousness of quality is
not undermined—all these are critical parts of a plan to continuously improve quality.
Although such faciors are difficult to incorporate explicitly into manpower planning
models, it is important that they be recognized in the averall workforce planning module,

Workforce planning 1s a deep and far-reaching subject that occupies a position close
to the core of manufacturing management. As such, it goes well beyond operations
munagement or factory physics. In Chapter 16 we will revisit this topic from an ana-
Iytical perspective and will examine the relationship between workforce planning and
aggregate planning. Whilc this is a useful starting place for workforce planning, we
remind the reader that it is only that. A well-balanced manpower plan must consider
issues such as those listed previously and will require input from virmally all segments
of the manufacturing organization.

13,5.3 Aggregate Planning

Once we have estimaied future demand and have determined what equipment and labor
will be available, we can generate an aggregate plan that specifies how much of each
product to produce over time. This is the role of the aggregate planning module
depicted in Figure 13.9. Because different facilities have different priorities and operating
characteristics, aggregate plans will differ from plant to plant. In some facilities the
dominant issue will be product mix, so aggregate planning will consist primarly of
determining how much of each product to produce in each period, subject to constraints
on demand, capacity, and raw material availability. In other facilities, the crucial issue
will be the timing of production, so the aggregate planning module will seek to balance
the costs of production (e.g., avertime and changes in the workforce size) with the costs
of carrying inventory while still meeting demand targets. In still others, the focus will
he an the timing of staff additions or reductions. In all these, we may also include the
possibility of augmenting capacity through the use of cutside vendars.

Regardless of the specific formulation of the aggregate planning problem, it is valu-
abie to be able to identify which constraints are binding. For instance, if the aggregate
planning module tells us that a particular process center is heavily utilized on average
over the next year, then we know that this is a resource that will have to be carefully
managed. We may want o institute special operating policies, such as using floating
labor, to make sure this process keeps working during breaks and lunches. If the prob-
lem is serious enough, it may even make sense o go back and revise the capacity and
manpower plans and requisition additional machinery and/or labor if possible.

The decisions that are addressed by the aggregate planning module require a fair
amount of advance planning. For instance, if we are seeking to build up inventory for
a period of peak demand during the summer, clearty we must consider the production
plan for several months prior to the summer. If we want to consider staffing changes to
accommodate the production plan, we may require even more advance warning. This
generally means that the planning horizon for aggregate planning must be relatively
long, typically a year or more. Of course. we should regenerate our aggregate plan more
frequently than this, since a year-long plan will be highly unreliable toward the end. It
often makes sense to update the aggregate plan quarterly or biannually.

We give specific formulations of representative aggregate planning moduies in Chap-
ter 16. Because we can often state the problem in terms of minimizing cost subject to
meeting demand, we frequenily use the tool of linear programming to help solve the
aggregate planning problem. Linear programming has the advantages that
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1. Ttis very tast, enabling us to solve large problems quickly. This is extremely
important for using the aggregate planning module in what-if mode,

2. It provides power(ul sensitivity analysis capability, for instance, calculating how
much additional capucity would affect total cost. This enables us to identify
critical resources and quickty gauge the effectiveness of various changes.

As we will sec in Chapter i6. linear programming also offers us a great deal of
flexibility for representing ditferent aggregate planning situations.

13.54 WIP and Quota Seiting

The WIP/quota-setting module, depicted in Figure 13.9 as working in close conjunction
with the aggregate planning module. is needed to translate the aggregate plan to control
parameters for a pull system. Recull that the key controls in a pull system are the
WIP levels, or card counts, in the production lines. Also, to link the pult system to
customer due dates, we need to set an additional control, namely, the production quota.
By establishing a quota, and then using buffer capacity to ensure that the quota is met
with regularity, we make Lhe system behavior approximate that of the “conveyor model”
discussed. The predictability of the conveyor model allows us to coordinate system
outputs with customer due dates.

Card Counts. We include WIP setting, or card count setting, at the intermediate level
in the PPC hierarchy in Figure 13.9, instead of at the bottom level, w0 remind the reader
that WIP levels should not be adjusted too frequently. As we noted in Chapter 10, WIP
is a fairly insensitive control. Altering card counts 1n an effort 10 cause throughput to
track demand is not likely to work well because the system will not respond rapidly
enough. Therefore. like other decisions at this level in the hierarchy, WIP levels should
be reevaluated on a fairly infrequent basis, say, quaricrly.

Fortunately, the fact that WIP is an insensitive control also makes it relatively easy
to set. As long as WIP levels are adequate to attain the desired theoughput and are not
grossly high. the system wil! function well. Therefore, it does not make sense to develop
highly sophisticated tools for computing WIP levels. In systems that are moving from
push to pull, it probably makes sense to set the initial WIP levels in the pull system
equal to the average levels that were experienced under push. Then, once the system
is operating stably, make incremental reductions. If a kanban-type system is used, so
that WIP levels are set at different points in the line, remove cards from those stations
with long queues that never or rarely empty out, If a CONWIP system is used, then the
overall WIP level can be reduced incrementally. Once workable WIP Jevels have been
established, they should be adjusted infrequently, to ensure that changes are made in
response to long-term trends rather than short-term fluctuations.

If we must set the WIP level along a rew {or reconfigured) routing that is to be run
as a CONWIP line, we cannot rely on historical performance to gauge the appropriate
WIP level. In this situation, the following is a reasonable rule of thumb. First, establish
a desired and feasible cycle time for the routing CT and identify the practical production
rate r,f’ (e.g., a feasible fraction of the hottleneck rate r5). Then use Little’s law to solve
for the WIP level as

WiP =rf xCT

If [ and CT are reahstic, this method will yield a reasonable starting point for WIP,
which can be adjusted over time. In general, care must be taken not to underestimate the
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feasible cycle time or practical production rate, since this will result in too little WIP,
with the censequence that throughput will be too low.

Production Quotas. In addition to WIP levels, the other key parameter for controlling
a pull system is the production quota. Hence, quota setting is included with the WIP
setting module in the PPC hierarchy in Figure 13.9,

The basic idea of a production quota is that we establish a periodic quantity of
work that we will (almost} always complete during the quota period. The period under

question might be a shifi. a day, or a week. In its strictest form, a production quota
means that

1. Production during the period stops when quota is reached.

2. Overtime is used at the end of the period to make up any shortage that occurred
during regular time,

This allows us to count on a steady output and therefore facilitates planning and due
date quoting. Of course, in practice, few quota systems adhere rigidly to this protocol.
Indeed, one of the benefits of CONWIP that we cited in Chapter 10 is that it allows
working ahead of the schedule when circumstances permit. However, for the purposes
of planning a reasonabte periodic production quota, it makes sense to model the system
as if we stop when guota is reached.

Establishing an economic production quota requires consideration of both cost and
capacity data, Relevant costs are those related to lost throughput and overtime. Important
capacity parameters include both the mean and the standard deviation of production
during a specified time interval (e.g., a week or a day). Standard deviation is needed
because variability of output has an impact on our ability to make a given production
quota. In general, the more variable the production process, the more likely we are to
miss the quota.

To see this, consider Figure 13.10. Suppose we have set the production quota for
regular time production {e.g., Monday through Friday) to be Q units of work.? I we
do not make  units during regular time, then we must run overtime (e.g., Saturday and
Sunday) to make up the shortage. Because of the usual contingencies (machine failures,
worker absenteeism, yield loss, etc.), the actual amount of work completed during regular
tirne will vary from period to period. Figure 13.10 represents two possible distributions
of regular time production that have the same mean y but different standard deviations
o. The probability of missing the quota is represented by the area under each curve to
the left of the value Q. Since the area under curve A, with the smaller standard deviation,
is less than that under B, the probability of missing the quota is less. What this means
is that if we define a probability of missing the quota that we are willing to live with—a
“service level” of sorts—then we will be able 1o set a higher quota for curve A than for
curve B. We can aim closer to capacity because the greater predictability of curve A
gives us more confidence in our ability to achieve our goal with reguliarity.

This analysis suggests that if we knew the mean 4 and standard deviation & of regular
time l:arocluctie:m,4 a very simple way 10 set a production quota would be to calculate the
quota we can achieve § percent of the time, where § is chosen by the user. If regular
time production X can be reasonably approximated by the normal distribution, then we

3[n a simple, single-product model, units of work are equal to pbysical units. In a more complex,
multiproduct sitaation, units must be adjusted for capacity, for instance, by measuring them in hours required
ar a critical resource.

49 will discuss a mechanism for oblaining estimates of x and ¢ frem actual operating experience in
Chapter 14,
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can compute the appropriate quota by finding the value Q@ that satisfies

¢(Q_“)=1—s
[#2

where ®(-) represents the cdf of the standard normal distribution.
For example, suppose that ¢ = 100, o = 10, and we have selected S = 85 percent
as our service level. Then the quota Q is the value for which
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From a standard normal table, we find that ${—1.04) = 0.15. Therefore, we can find @
from

0 — 100
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0 = 89.6

A problem with this simple method is that it considers only capacity, not costs.
Therefore it offers no guidance as to whether the chosen service level is appropriate. A
lower service level will result in a higher quota, which will increase throughput but will
also increase overtime costs. A higher service level will result in a lower quota, which
will reduce throughput and overtime costs. We offer a model for balancing the cost of
lost throughput with the cost of overtime in Appendix 13A and more complex variations
on this model in Hopp et al. (1993).

13.5.5 Demand Management

The effectiveness of any production control system is greatly determined by the envi-
ronment in which it operates. A simple flow line can function well with very simple
planning tools, while a complex job shop can be a management nightmare even with
very sophisticated tools. This is just a fact of life; some plants are easier to manage than
others. But it is also a good reason to remember one of our “lessons of JIT,” namely, that
the environment is ¢ control. For example, if managers can make a job shop look like a
flow shop by dedicating machines to “cells” for making particular groups of products,
they can greatly simplify the planning and control process.

One key area in which we can shape the environment “seen” by the modules in
the lowest levels of the planning hierarchy is in managing customer demands. The
demand management module shown in Figure 13.9 does this by filtering and possibly
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adjusting customer orders into a form that produces a manageable master production
schedule. As we noted in Chapter 4, leveling demand or “preduction smoothing” is
an essential feature of JIT. Without a stable production volume and product mix, the
rate-driven, mixed-model production approach described by Ohno (1988) and the other
JIT advocates cannot work. This implies that customer orders cannot be released to the
factory in the random order in which they are received. Rather, they must be collected
and grouped in a way that maintains a fairly constant loading on the factory. Balancing
the concern for factory stability with the desire for dependable customer service and
short competitive due date quotes is the challenge of the demand management module.

There are many approaches one could use to quote due dates and establish a near-
term MPS within the demand management module. As we discussed, if we establish
periedic production quotas, then we can use the conveyor model for predicting flow
through the plant. Under these conditions, we can think of customer due date quoting
as “loading the conveyor.” 1f we do not have to worry about machine setups and have
a capacity cushion, we can quote due dates in the order they are received, vsing the
conveyor model described by Equation {13.19). However, when there is variability and
little or no capacity cushion, we must quote due dates using a difterent procedure (see
Chapter 15). Likewise, if batching products according to family (i.e., parts that share
important machine setups} is important to throughput, we may want to use some of the
sequencing techniques discussed in Chapter 15.

While there are many methods, the important point is not which method but that some
method be employed. Almost anything that achieves consistency with the scheduling
procedure will be better than the all-too-common approach of quoting due dates in near
isolation from the manufacturing process.

13.5.6 Sequencing and Scheduling

The MPS is still a production pian, which must be translated to a work schedule in
order to guide what actually happens on the factory floor. In the MRP II hierarchy,
shown in Figure 3.2, this figure is carried out by MRP? In the production planning
and control hierarchy for pull systems shown in Figure 13.9, we include a sequenc-
ing/scheduling module that is the pull analog of MRP. As in MRP, the objective of this
sequencing/scheduling module is to provide a schedule that governs release times of
work orders and materials and then facilitates their movement through the factory.

To paraphrase Einstein, we should strive to make the work schedule as simple as
possible, but no simpter, The goal should be to provide people on the floor with enough
information to enable them to make reasonable control choices, but not so much as to
overly restrict their options or make the schedule unwicldy. What this means in practice
is that different plants will require different scheduling approaches. In a simple flow
line with no significant setup times, a simple sequence of orders, possibly arranged
according to earliest due date (EDD), may be sufficient. Maintaining a first-in-system-
first-out (FISFO) ordering of jobs at the other stations will yield a highly predictable and
easily manageable output stream for this situation.

However, in a highty complex job shop, with many routings, machine setups, and
assemblies of subcomponents, a simple sequence is not even well defined, let alone
useful. In the more complex situations, it will not be clear that the MPS is feasible.

5Recal! from Chapter 3 that MRP (“little mrp”} refers to material requirements planning, the tool for
generating planned order releases, while MRP II (“big MRP") refers (o manufacturing resources planning,
the overarching planning system incorporating MRP. Enterprise resource planning { ERP) exiends the MRP
1 hierarchy to multiple-facility systems.
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Consequently, iteration between the MPS module and the sequencing/scheduling mod-
ule will be necessary. A procedure for detecting schedule infeasibility and suggesting
remedies (e.g., adding capacity, pushing out due dates) is called capacitated material
requirements planning, or MRP-C, and is described in Chapter 15. This procedure in-
tegrates the demand management, MPS, and sequencing/scheduling functions into one.
In complex situations such as this, we may need to provide a fairly detailed schedule,
with specific release times for jobs and matertals and predicted arrival times of jobs at
workstations. Of course, the data requirements and maintenance overhead of the system
required to generate such a schedule may be substantial, but this is the price we pay for
complexity.

13.5.7 Shop Floor Control

Regardless of how accurate and sophisticated the scheduling tool is, the actual work
sequence never follows the schedule exactly. The shop floor control (SFC) module
shown in Figure 13.9 uses the work schedule as a source of general guidance, adhering
to it whenever possible, but also making adjustments when necessary. For instance,
if a machine failure delays the arrival of parts required in an assembly operation, the
SEC module must determine how the work sequence should be changed. In theory, this
can be an enormously complex problem, since the number of options is immense—we
could wait for the delayed part, we could jump another job ahead in the sequence, we
could scramble the entire schedule, and so on. But, in practice, we must make decisions

: quickly, in real time, and therefore cannot hope to consider every possibility. Therefore,
the SFC module must restrict attention to a reasonable class of actions and help the user
rmake effective and robust choices.

) To take advantage of the pull benefits we discussed in Chapter 10, we favor an SFC
module based on a pull mechanism. The CONWIP protocol is perhaps the simplest
approach and therefore deserves at least initial consideration. To use CONWIP in con-
junction with the sequencing/scheduling module, we establish a WIP cap and do not
allow releases into the line when the WIP exceeds the maximum level. This will serve
to delay releases when the plant is behind schedule and further releases cannot help.
CONWIP also provides a mechanism for working ahead of the schedule when things are
going well. If the WIP level falls below the WIP cap before the next job is scheduled to
be released, we may want to allow the job to start anyway. As long as we do not work
too far ahead of the schedule and cause a loss of flexibility by giving parts “personality”
too early, this type of work-ahead protocol can be very effective.

Chapter 14 is devoted to the SFC problem; there we will discuss implementation
of CONWIP-type SFC modules and will identify situations in which more complicated
SFC approaches may be necessary.

13.5.8 Real-Time Simulation

In a manufacturing management book such as this, one is tempted to make sweeping
admonitions of the form “Never have hot jobs,” and “Always follow the published sched-
ule.” Certainly, the factory would be easier to run if such rigid rules could be followed.
But the ultimate purpose of a manufacturing plant is not to make the lives of its managers
easy; it is to make money by satisfylng customers. Since customers change their minds,
ask for favors, etc., the reality of almost every manufacturing environment is that some-
times emergencies occur and therefore some jobs must be given special treatment. One
would hope that this doesn’t occur all the time (although it all too frequently does, as in



444 Part Ifi  Principles in Practice

a plant we once visited where every job shown on the MRP system had been designated
“rush’). But, given that it will happen, it makes sense to design the planning system to
survive these eventualities, and even provide assistance with them. This is the job of the
real-time simulation module shown in Figure 13.0.

We have found simulation to be useful in dealing with emergency situations, such
as hot jobs. By simulation, however, we do not mean full-blown Monte Carlo simulation
with random number generators and statistical output analysis. Instead, we are referring
to a very simple deterministic model that can mimic the behavior of the factory for short
periods of time. One option for doing this is 1o make use of the previously described
conveyor model to represent the behavior of process centers and take the current position
of WIP in the system, u list of anticipated releases, and a set of capacity data (including
staffing), to generate a set of job output times. Such a model can be reasonably accurate
in the near term (e.g., over the next week), but because it cannot incorporate unforeseen
events such as machine failures, it can become very inaccurate over the longer term.
Thus, as long as we restrict the use of such a model to answering shor-term what-
if questions—What will happen to due date performance of various other jobs if we
expedite job »?—this type of tool can be very useful. Knowing the likely consequences
in advance of taking emergency actions can prevent causing serious disruption of the
factory for little gain.

13.5.9 Production Tracking

In the real world there will always be contingencies that require human interveation by
managers. While this may seem discouraging to the designers of production planning
systems, it is one of the key rcasons for the existence of manufacturing managers. A
good manager should strive for a system that functions smoothly most of the time, but
also be ready to take corrective action when things do not function smoothly. To detect
problems in a timely fashion and formulate responses, a manager must have key data
at her fingertips. These data might include the location of parts in the factory, status of
equipment (e.g., up, down, under repair), and progress toward meeting schedule. The
preduction tracking module depicted in Figure 13.9 is responsible for tabulating and
displaying this type of data in a usable format.

Many of the planning modules in Figure 13.9 rely on estimated data. In particular,
capacity data are essential to several planning decisions. A widely used practice for
estimating capacity of currently installed equipment is to start with the rated capacity
(e.g., in parts per hour) and reduce this number according to various detractors (ma-
chine downtime, operator unavailability, setups, etc.). Since each detractor is subject to
speculation, such estimates ¢an be seriously in error. For this reason, it makes sense to
use the production tracking module to collect and update capacity data used by other
planning modules. As we wilt see in Chapter 14, we can use the technique of expenential
smoothing from forecasting to generate a smoothed estimate of capacity and to monitor
trends over time.

13.6 Conclusions

In this chapter, we have offered an overview of a production planning and control hier-
archy that is consistent with the pull production systems we discussed in Chapters 4 and
10. This overview was necessarily general, since there are many ways a planning system
could be constructed and different environments are likely to require different systems.
We will fill in specifics in subsequent chapters on the individual planning modules. For
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now, we close with a summary of the main peints of this chapter pertaining to the overall
structure of a planning hierarchy;

1. Pianning should be done hierarchically. 1t makes no sense to try to use a precise,
detailed model to make general, long-term decisions on the basis of rough, speculative
data. In general, the shorter the planning horizon, the more details are required. For this
reason, it is useful to separate planning problems into long-term (strategic), intermediase-
tertn (tactical), and short-term (control) meIems, Similarly, the level of detail about
products increases with nearness in time, for instance, planning for total volume in the
very long term, part families in the intermediate term, and specific part numbers in the
very short term.

2. Consistency is critical, Good individual modules can be undermined by a lack
of coordination. It is important that common capacity assumptions, consistent staffing
assumptions, and coordinated data inputs be used in the different planning modules.

3. Feedback forces consistency and learning. Some manufacturing managers con-
tinue to use poor-quality data without checking their accuracy or setting up a system for
collecting better data from actuat plant performance. Regardless of how it is done (e.g.,
manually or in automated fashion), it is important to provide some kind of feedback for
updating critical parameters. Fusthermore, by providing a mechanism for observing and
tracking progress, feedback promotes an environment of continual improvement.

4. Different plants have different needs. The above principles are general; the details
of implementing them must be specific to the environment. Small, simple plants can
get away with uncomplicated manuat procedures for many of the planning steps. Large,
complex plants may require sophisticated automated systems. Although we will be as
specific as possible in the remainder of Part I1I, the reader is cautioned against taking
details too literally; they are presented for the purposes of illustration and inspiration
and cannot replace the thoughtful application of basics, intuition, and synthesis.

APPENDIX I3A
A QUOTA-SETTING MODEL

The key economic tradeoff to consider in the quota-setting module is that between the cost of
tost throughput and the cost of overtime. High production quotas tend 1o increase throughput, but
run the risk of requiring more frequent overtime. Low quotas will reduce overtime, but will also
reduce throughput.

To develop a specific quota-setting model, let us consider regular time consisting of Monday
through Friday (three shifts per day) with Saturday avatlable for preventive maintenance (PM) and
catch-up. If catch-up time is needed, we assume a full shift is worked (e.g., union regulations or
company policy requires it). Consequently the cost of overtime is essentially fixed, and we will
represent it by Cor. If we ket the net profit per standardized unit of production be p and the total
expected profit (net revenue minus expected overtime cost) be denoted by Z, the guota-setting
problem can be formally stated as

mgx Z = p@ — CorP (ovenime is needed) (13.20)

Notice that, as expected, decreasing Q affects the objective by lost sales, while increasing ¢ will
affect it by increasing the probability that overtime will be needed. The optimization problem is
to find the value of O that strikes the right balance.

Where shifts are long compared to the time (0 produce one part, it may be reasonable to assume
that production during regular time is normatly distributed with mean g and standard deviation o.
This assumption allows us toexpress the weekly quota as Q = u — ko Now the question becomes,
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How many standard deviations below rnean production should we set the quota to be? In other
words, our decision variable is now k. Under this assumption, we can rewrite Equation {13.20) as

max Z=p(p —koy — Corll — $(k)] (13.21)

where @ (k) represents the cumulative distribution function of the standard normal distribution,
It not difficult to show (although we will not burden the reader with the details) that the unique

solution to Equation (13.21} is
{ Cor
k= [2In 13,22
2 po ( )

We can then express the optimal quoa directly in units of work, instead of units of standard
deviations, as follows:

g'=p—kea (13.23)

Notice that since k* will never be negative, Equation (13.23) implies that the optimal quota
will always be less than mean regular time production. As fong as overtime costs are sufficiently
high to make using overtime on a routine basis unattractive, this result will be reasonable. If we
were to use a guota egual to the mean regular time production, then we would expect to miss
it, and require overtime, approximateiy 50 percent of the time. Hence, if overtime is sufficiently
expensive, less frequent use of it will be economical; therefore we should choose a quota less than
the mean regular time production, and this modei is plausible.

However, it is quite possible that the profitability of additional sales outweighs the cost of over-
time. In this situation, our intuition tells us that a high quota {i.., to force additional production)
may be attractive, even if it results in missing the quota more than 50 percent of the time. For
instance, consider an example with the following costs and production parameters:

p=3$100 = 5,000
Cor = $10.000 a =500
Notice that we can “pay” for overtime with the profits of just 100 units, which is only 2 percent
of the mean regular time production. This means that there is strong incentive 10 use the overtime

period for extra production. Using our model to analyze this issue by substituting the above
numbers into expression (13.22), we get

= \/——?&
which is mathematically ridicutous. Clearly, the model runs into trouble whenever
Cor
V21 po

because the natural logarithm term in Equation (13.22) becomes negative. In economic terms,
this means that the fixed cost of overtime is not large enough to discourage the use of overtime for
routine production. In practical terms, it means either of the following:

<1 (13.24)

1. The fixed overtime cost should be reexamined, and perhaps altered. It may also make
sense to include a variable (i.e., per unit) overtime cost. Development of such a model is
given in Hopp, Spearman, and Duenyas (1993},

2. It may really be cconomically attractive to use overtime for routine production. If this is
the case, it may make sense to run continuously, without capacity cushions. To set a target
quota for the purposes of quoting due dates to customers, we need to balance the cost of
running at less than maximum capacity with the cost of failing to mect a promised due
date. A model for this case is also described in Hopp, Spearman, and Duenyas (1993).

The above simple mode! can be used to give a rough measure of the economics of capagity
parameters. Clearly, Equations (13.21) and (13.22} indicate that both the mean and the standard
deviation of regular time production are important. By using these equations, we can compute the
effect on the weekly profit of changes in various parameters. In particular, we can examine the
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effect of changes in the mean of regular time production 4 and standard deviation of regular time
production o

To see this, consider a simple example in which p = $100, Cnr = $10,000, and 4 and o
are varied to determine their impact. Frem Equation {13.21) it is obvious that profit will increase
linearly in mean regular time capacity u. If o is fixed, k* does not change when u is varied,
Therefore, each increase in g by 1 unit increases Z by p. Obviously, we are able 1o make more
and therefore sell more

The situation is a little more complex when g is fixed but ¢ is varied. This is because {from
(13.22)) &* will change as o is altered. Furthermore, we must be careful that the term inside the
square root of Equation (13.22) dees not become negative. Condition (13.24) implies that we must
have

Cor 10,000 299

77 Jamp  JImi00p
for k* to be well defined. Figure 13.11 plots the optimal weekly profit when i is fixed at 100 units
and ¢ is varied from 0 to 39.9. This figure illustrates the general result that profits increase when
variability is reduced. The reason for this is that when regular time production is less variable, we
can set quota closer to capacity without risking frequent overtime. Thus, we can achieve greater
sales revenues without incurring greater overtime costs.

Study Questions

1. Why does it make sense to address the problems of planning and control in a manufacturing
systern with a hierarchical system? What would a nonhierarchical system Yook like?

2. Is it reasonable to specify rules regarding the frequency of regencration of particular
planning functions (e.g., “aggregate planning should be done quarterly™)? Why or why not?

3. Give some passible reasons why MRP has spawned elaborate hierarchical planning
structures while JIT has not.

4. Why is it important for the varions medules in a hierarchical planning system to achieve
consistency? Why is such consistency not always maintained in practice?

5. What is the difference between causal forecasting and time series forecasting?

6. Why might an exponential smoothing model exhibit negative bias? An exponential
smoothing model with a linear trend?

7. In this era of rapid change and short product lifetimes, it is common for process technology

to be nsed to produce several generations of a product or even completely new products.
How might this fact enter into the decisions related to capacity/facility planning?

SNote that this is only true becanse of our assumption that capacity is the constraint on sales. If demand
becomes the constraint, then this is clearty no longer true, since it makes no sense to set the quota beyond
what can be sold.
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8, In what ways are capacity/facility plannmg and workforce planning analogous? How do
they differ?

9. How must the capacity/facility planning and aggregate planning be coordinated? What can
happen if they are not?

10. One of the functions of sequencing and scheduling is to make effective use of capacity by
balancing setups and due dates. This implies that actual capacity is not known until a
schedule is developed. But hoth the capacity/facility planning and aggregate planning
functions rely on capacity data. How can they do this in the absence of a schedule (i.e., how
can they be done at a higher level in the hierarchy than sequencing or scheduling)?

11. How is demand management practiced in MRP? In JIT?

12. If a plant generates a detailed schedule al the beginning of every week, does it need a shop
floor control module? If so, what tunctions might an SFC module serve in such a system?

13. What purpose does feedback serve in a hierarchical production planning system?

Problems

1. Suppose the monthly sales for a particular product for the past 20 months have been as
follows:

Month 1 23 4 5 6 7 8 9 10
Sales 22 21 24 30 25 25 33 40 36 39

Momth 11 12 43 14 IS 16 17 I8 19 20
Sales 50 55 44 48 35 47 61 58 55 60

a. Use a five-period moving average to compute forecasts of sales for months 6 10 20 and a
seven-period moving average to compute forecasts for months 8 to 20. Which fits the data
better for months & to 207 Explain.

b, Use an exponential smoothing approach with smoothing constant a = 0.2 to forecast sales
for months 2 to 20. Change o to 0.1, Does this make the fit better or worse? Explain.

¢. Using exponential smoothing, find the value of o that minimizes the mean squared
deviation (MSD) over months 2 to 20. Find the value of & that minimizes BIAS. Arc they
the same? Explain.

d. Use an exponential smoothing with 2 linear trend and smoothing constants & = 0.4 and
B = 0.2 to predict output for months 2 to 20. Does this fit better or worse than your
answers to b7 Explain,

2. The following data give ciosing values of the Dow Jones Industrial Average for the 30 weeks,

months, and years prior to August 1, 1999,

a. Use expunential smoothing with a linear trend and smoothing cocfficients of ¢ = f = 0.1
on each set of data to generate forecasts for the Dow Jones Industrial Average on August 1,
2000. Which data set do you think yields the best forecast?

b. What weight does a one-year-old data point get when we use smoothing constant o = 0.1
on the weekly data? On the monthly data? On the annual data? What smoothing constant
for the monthty model that gives the same weight to ong-year-old data is given by the
annual model with o = 0,17

¢. Does using the adjusted smoothing constant computed in part b (for « and §) in the
monthly model make it predict the closing price for August 1, 20007 If not, why not?

4. How much value do you think time series models have for forecasting stock prices? What
features of the stock market make it difficult to predict, particularly in the short term?
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3. Hamburger Heaven has hired a team of students from the local university to develop a

Weekly Data Monthly Data Annual Data
Date Close Date Close Date Close
1/4/99 9.643.3 | 2/1/97 6,877.7 | B/1/69 B36.7
1/11/99 9.340.6 | 3/1/97 6,583.5 | 81770 764.6
1/18/99 91207 | 41/97 7.009.0 | 8/1/71 898.1
1/25/99 9,358.8 | 5/1/97 7,331.0 | 8/1/72 963.7
211199 9,304.2 | 6/1/97 7,672.8 | B/1773 887.6
2/8/99 92749 | 197 82226 | 8/1/74 678.6
2/15/99 5,340.0 | 8/1/97 7,622.4 | 8175 835.3
2/22/99 9.306.6 | 9/1/97 7.945.3 | B/1/76 973.7
3/199 9,736.1 | 10/1/97 7.442.1 | BASTT 861.5
3/8/99 9.876.4 | 11/1/97  7,823.1 | 8/1/78 376.8
3/15/99 9.903.6 | 12/1/97 7,908.3 | 81779 887.8
3/22/95 9,822.2 1 1/1/98 7.906.5 | B/1/80 932.6
3/29/99 98325 | 2/1/98 8,545.7 | 8/1/81 881.5
4/5/99 10,173.8 | 3/1/98 8,799.8 | B/1/82 901.3
4/12/99 104939 | 4/1/98 9,063.4 | 8/1/R3 1,216.2
4/19/99 10,689.7 | 5/1/98 3,900.0 { 8/1/84 1,224.4
4/26/99 10.789.0 | &/1/98 8.952.0 | 8/1/85 1,334.0
5/3/99 11.031.6 | 7/1/98 8,883.3 | 8/1/86 1,898.3
3/10/99 10913.3 | B/1/58 7,539.1 | 8/1/87 2,663.0
5/17/99  10.829.3 | 9/1/98 7.842.6 | B/1/88 20317
5/24/99  10,559.7 | 10/1/98 8,592.1 | 8/1/89 2,737.3
5/31/99  10,799.8 | 11/1/98 4,116.6 | 8/1/90 2,6144
6/1/99 10,4905 ¢ 12/1/98  9,181.4 | 8/1/9] 3,043.6
6/14/99 10.855.6 | 1/1/99 9.358.8 | B/1/92 3,2574
6/21/99 10,5526 | 2/1/99 9.306.6 | 8/1/93  3,651.3
6/28/99 11,139.2 | 3/1/99 9,786.2 | 8/1/94 39134
743199 11,1937 | 4/1/99 10,789.0 | 8/1/95 4,610.6
FI299 11,2098 | 5/1/59 10,559.7 | 8/1/96 5,616.2
7/19/99 109110 | 6/1/99 10,970.8 | 8/1/97 76224
7/26/99  10,655.1 | 7/1/99 10,655.1 | B/1/98 7,539.1
872199 10,714.0 | 8/1/99 10,8203 | 81/99 10,829.3
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forecasting tool for predicting weekly burger sales to assist in the purchasing of supplies. The

assistant manager, who has taken a couple of college classes, has heard of exponential

smoothing and suggests that the students try using it. He gives them the following data on
sales for the past 16 weeks.

Week 1 2 3 4 5 6 7 8
Sales 3,500 3,700 3400 3900 4,100 3500 3600 4,200
Week 9 10 11 12 13 14 15 16
Sales 9300 8900 9,100 9,200 9,300 9000 9400 9,100

&, What happens if exponential smoothing (with no trend) is applied to these data in a

conventional manner? Use a smoothing constant o = 0.3
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5. Does it improve the forecast if we use exponential smoothing with a linear trend and
smoothing constants o = § = .37

c. Suggest 2 modification of exponential smoothing that might make more sense for this
situation.

4. Select-a-Model offers computer-generated photos of people posing with famous supermodetls.
You simply send in a photo of yourself, and the company sends back a photo of you skiing, or
baoating, or night clubbing, or whatever, with a model. Of course, Select-a-Model must pay
the supermodels for the use of their images. To anticipate cash flows, the company wants o
set up a forecasting system to predict sales. The following table gives monthly demand for the
past two years for three of the top-selling models,

Mouth Modell Maodel2 Model3

i 82 95 148
2 25 12 125
3 44 9G 78
4 36 56 53
5 27 34 23
] 9 65 29
7 Y 65 9
8 33 92 68
9 a7 91 84
10 92 116 11
11 39 141 147
12 94 i37 120
13 70 i24 147
14 72 SO 109
15 S0 72 96
i6 73 71 70
17 6 92 42
18 30 140 36
19 o8 170 34
20 9 150 28
21 G 141 71
' 22 i7 180 102
23 25 171 103
24 I 124 144

a. Plot the demand data for all three models, and suggest a forecasting model that might be
suited to each.

b, Find suitable constants for model 1. How good a predictor is the resulting model?

¢. Find suitable constants for model 2. How good a predictor is the resulting model?

4. Find suitable constants for model 3. How good a predictor is the resulting model?

5. Can-Do Canoe sells lightweight portable canoes. Quarterly demand for its most popular
product family over the past three years has been as follows:

T
Year 1996 1997 1998

Quarter i 2 3 4 i 2 3 4 1 2 3 4
Demand | 25 120 40 60 | 30 140 60 8035 150 55 90
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Use an exponential smoothing model with smoothing constant o = 0.2 to develop a
forecast for thesc data, How does it fit? What is the resulting MSD?

Use an exponential smoothing with a liear trend mmodel with smoothing constants

a = B = 0.2 to develop a forecast for these data. How does it fit? What is the resulting
MSD?

Use the Winters method with smoothing constants @ = 8 = y = 0.2 (o develop a forecast
for these data. How does 1t fit? What is the resulting MSD?

Find smocthing constants that minimize MSD over the second two years of data. How
does the resulting forecast fit the data in the third year?

Find smoothing constants that minimize MSD over the third year of data. How much
better does the model fit the data in the third year than that of part 47 Which model, d or e,
do you think is likely to beiter predict demand in year 47

. Suppose a plant produces 3 customized high-performance bicycles per day and maintains on

average 10 days’ worth of WIP in the system.

a.

b,

.

What is the average cycle ime (i.e., time from when an order is released to the plant until
the bicycle is completed, ready to ship)?

When would the comevor model predict that the 400th bicycle will be completed?
Suppose we currently have orders for 1,000 bicycles (i.e., including the orders for the 500
bicycles thut have already been released to the plant) and a customer is inquiring about
when we could deliver an order of 50 bicycles. Use the conveyor model to predict when
this new order will be compteted. It we have flexibility concerning Lhe due date we quote
to the customer, should we guote a date calculated carlier, later, or at the same time as that
computed using the conveyor model? Why?

. Marco, the manager of a contractor’s supply store, is concerned about predicting demand for

the DeWally 519 hammner drill in order to help plan for purchasing. He has brought in a team
of MBAs, whe have suggested using a moving-average or exponential smoothing method,
However, Marco is not sure this is the tight approach because, as he points out, sales of the
drill are affected by price. Since the store periodically runs promotions during which the price
is reduced, he thinks that price should be accounted for in the forecasting model. The
following are price and sates data for the past 20 weeks,

Week Price  Sales

1 199 25
2 199 27
3 199 24
. 4 179 35
3 199 21
6 199 26
7 199 29
& 199 28
g 199 32
10 169 48
11 169 45
12 199 30
13 199 38
14 199 37
15 199 3R
16 199 39
17 179 45
18 199 40
i9 199 39
20 199 42
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a. Propose an alternative to a time series model for forecasting demand for the Dewally 519.
b. Use your method for the first # weeks of data to predict sales in week n + 1 for

n=15,...,19. How well does it work?
¢. What does your model predict sales will be in week 21 if the price is $199? If the price is
5179?

8. Suppose Clutch-o-Matic, Inc., has been approached by an automotive company to provide a
particular model of clutch on a daily basis. The automotive company needs 1,000 clutches per
day, but expects to divide this production among several suppliers. What the company wants
from Clutch-o-Matic is a cornmitment to supply a specific number each day (i.e., a daily
guota). Under the terms of the contract, failure to supply the quota will result in a financial
penalty.

Clutch-o-Matic has a line it could dedicate to this customer and has computed that the
line has a mean daily production of 250 clutches with a standard deviation of 50 clutches
under single (eight-hour) shift production. A clutch sells for $200, of which $30 is profit. If
overtime is used, union rules require at least two hours of overtime pay. The cost of worker
pay, supervisar pay, utilities, etc., for running a typical overtime shift has been estimated at
$6,200.

a. What is the profit-maximizing quota from the perspective of Clutch-o-Matic?

. What is the average daily profit to Clutch-o-Matic if the quota is set at the level computed
in a?

¢. If the automotive company insists on 250 clutches per day, is it still profitable for
Chutch-o-Matic? How much of a decrease in profit does this cause relative to the quota
from b7

4. How might a quota-setting model like this one be used in the negotiation process between
a supplier and its customers requesting JIT contracts?
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14 SuOP FLOOR CONTROL

Even a journey of one thousand i begins with a single step.
Lao Tzu

14.1 Introduction

Shop floor control (SFC) is where planning meets parts. As such, it is the foundation
of a production planning and control system. Because of its proximity to the actual
manufacturing process, SFC is also a natural vehicle for collecting data for use in the
other planning and control modules. A well-designed SFC module both controls the
flow of material through the plant and makes the rest of the production planning system
easier to design and manage.!

Despite its logical importance in a production planning hierarchy, SFC is frequently
given little attention in practice. In part, this is because it is perceived, too narrowly, we
think, as purely material low control. This view makes it appear that once one has a
good schedule in hand, the SFC function can be accomplished by routing slips attached
to parts and giving the sequence of process centers (o be visited; one simply works on
parts in the order given by the schedule and then moves them according to the routing
slips. As we will see here and in Chapter 15, even with an effective scheduling module,
the control of material flow is frequently not so simple. No scheduling system can
anticipate random disruptions, but the SFC module must accommodate them anyway.
Furthermore, as we have already noted and will discuss further in this chapter, material
flow control is simply too narrow a focus for SFC. When one includes the other functions
that are appropriately included in SFC, this module assumes a critical function in the
overall planning hierarchy.

There may be another reason for the lack of attention to SFC. A set of results
from the operations management literature indicates that decisions affecting material
flow are less important to plant performance than are decisions dealing with shaping the
production environment. Krajewski et at. (1987) used simulation experiments to show

'We remind the reader thar we are using the term module to include all the decision making, record
keeping, and computation associated with a particular planning or control problem. So while the SFC
module may make use of a computer program, it involves meore than this. Indeed, some SFC modules may
not even be computerized at all,

453
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that the benefits from tmproving the productton environment by reducing setup times,
improving yields, and increasing worker flexibility were far larger than the bencfits from
switching to a kanban system from a reorder point or MRP system. On the basis of
their study, they conctuded that (1) reshaping the production environment was key to the
Japanese success stories, and (2) if a firm improves the environment enough, it does not
make much ditference what type of production control system is used. In a somewhat
narrower vein, Roderick et al. (1991} used simulation to show that the release rate had
a far greater effect on performance than did work sequencing at individual machines.
Their conclusion was that master production schedule (MPS) smoothing is fikety to have
astronger beneficial effect than sophisticated dispatching technigues for controlling work
within the line.

If one narrowly interprets SFC to mean dispatching or flow control between ma-
chines, then studies like these do indeed tend to minimize its importance. However, if
one takes the broader view that SFC controls flow and establishes links between other
functions, then the design of the SFC module serves to shape the production environ-
ment. For instance, the very decision to install a kanban system evinces a commitment
tv small-lot manufacture and setup reduction. Moreover, a pull systern automatically
governs the release rate into the factory, thereby achieving the key benefits identified by
Roderick et al.

But is kanban {or something like it) essential 1o achieving these environmental im-
provements? Krajewski et al. imply that environmental improvements, such as setup
reduction, could be just as cffective without kanban, while JIT proponents contend that
kanban is needed to apply the nccessary pressure to force these improvements. Our view
is closer to that of the JIT proponents; without an SFC module that promotes environ-
mental improvements and, by means of data collection, documents their effectiveness,
it is extremely difficult to identify areas of leverage and make changes stick. Thus, we
will take the reshaping of the production environment as part and parcel of SFC module
design,

On the basis of our discussions in Chapters 4, 10, and 13, we feel that the most
effective (and manageable) production environment is that established by a pull system.
Recall that the basic distinction between push and pull is that push systems schedule pro-
duction, while pull systems authorize production. Fundamental 1o any pull mechanism
for authorizing production is a WIP cap that limits the total inventory in a production
line. Tn ous terminology, 4 system cannot be termed pull if it does not establish a WIP
cap. Complementing this defining feature are a host of other supporting characteristics
of pull systems, including setup time reduction, worker cross-training, cetlular layouts,
quality at the source, and so0 on. The manner and extent to which these techniques can
be used depend on the specific system. The objective for the SFC module is to make
the actual production environment as ctose as possible to the ideal environments we
examined in Chapters 4 and 10. At the same time, the SFC module should be relatively
gasy 1o use, integrate weil with the other planning functions, and be flexible enough to
accommodate changes the plant is likely to face. As we will see, because manufacturing
settings differ greatly, the extent to which we can do this will vary widely, as will the
nature of the appropriate SFC module.

Figure 14.1 illustrates the range of functions one can incorporate into the SFC
module. At the center of these functions is material flow control (MFC), without which
SEC would not be shop floor control. Material flow control is the mechanism by which
we decide which jobs to release into the factory, which parts 1o work on at the individual
workstations, and what material to move 10 and between workstations. Although SFC
is sometimes narrowly interpreted (o consist solely of material flow control, there are a
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number of other functions that are integrally related to material flow control, and a good
SFC module can provide platform for these.

WIP tracking, status monitoring, and throughput tracking deal with what is
happening in the plant in real time. WIP tracking involves identifying the current location
of parts in the line. Its implementation can be detailed and automated (e.g., through the
use of optical scanners) or rough and manua! (e.g., performed by log entries at specified
points in the ling). Status monitoring refers to surveillance of other parameters in the
line besides WIP position, such as machine status (i.e., up or down) or staffing situation.
Throughput tracking copsists of measuring output from the line or plant against an
established production quota and/or customer due dates, and it can be used to anticipate
the need for overtime or staffing shifts.

Since the SFC module is the place where real-time control decisions are imple-
mented, it is a natural place for monitoring these types of changes in real-time status of
the line. If the SFC module is implemented on a computer, these data collection and
display tasks are likely to share files used by the SFC maodule for material fiow centrol.
Even if material flow contrel is implemented as a manual system, it makes sense to think
about monitoring the system in conjunction with controlling it, since this may have an
impact on the way paperwork forms are devised. A specific mechanism for monitoring
the system is statistical throughput control (STC), in which we track progress toward
making the periodic production quota. We give details on STC in Section 14.3.1.

In addition to collecting information about real-time status, the SFC module is a
useful place to collect and process some information pertaining to the future beyond
real time. One possibility is the real-time simulation function, in which projections are
made about the timing of arrival of specific parts at varions points in the line. Chapter 13
addressed this function as an off-line activity. However, it is also possible to incorporate

a version of the real-time simulation module directly into the SFC module. The basic
mechanism is to use information about current WIP position, collected by the WIP
tracking function, plus a model of material flow (e.g., based on the conveyor model) to
predict when a particular job will reach a specific workstation. Being able to call up
such information from the system can aliow line personnel to anticipate and prepare for
jobs.

A different function of the SFC module is the collection of data to update capacity
estimates. This capacity feedback function is important for ensuring that the high-level
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planning modules are consistent with low-level execution, as we noted in Chapter 13.
Since the SFC modute governs the movement of materials through the plant, it is the
natural place to0 measure outpult. By monitoring input over time we can estimate the
actual capacity of a line or plant. We will discuss the details of how to do this in Section
14.5.2,

The fact that move points represent natural opportunities for quality assurance es-
tablishes a link between the SFC module and quality contrel. If the operator of a
downstream workstation has the authority to refuse parts from an upstream workstation
on the basis of inadequate quality, then the SFC module must recognize this disruption
of a requested transaction. The material flow contral function must realize that replace-
ments for rejected parts are required or that rework will cause delays in part arrivals; the
WIP tracking function must note that these parts did not move as anticipated; and the
work forecasting function must consider the delay in order to make work projections.
Furthermore, since quality problems must be noted for these control purposes, it is often
convenient to use the system to keep a record of them. These records provide a link
10 a statistical process conirol {(SPC) system for monitoring quality performance and
identifying opportunities for improvement.

In the remainder of this chapter, we give

. An overview of issues that must be resolved prior to designing an SFC module.
. A discussion of CONWIP as the basis for an SFC module.
. Extensions of CONWIP schemes.

Mechanisms for tracking production in order to measure progress toward quota
in the short term, and collecting and validating capacity data for other planning
modules in the long term.

Pl

14.2

General Considerations

One is naturally tempted to begin a discussion of the design of an SFC system by address-
ing questions about the control mechanism itself: Should work releases be controlled
by computer? Should kanban cards be used? How do workers know which jobs to work
on? And so on. However, even more basic questions should be addressed first. These
deal with the general physical and logical environment in which the SFC system must
operate,

To develop a reasonable perspective on the management implications of the SFC
module, it is important to consider shop floor control from both a design and a control
standpoint. Design issues deal with establishing a system within which to make deci-
sions, while control issues treat the decisions themselves. For instance, choosing a work
release mechanism is a design decision, while selecting parameters (e.g., WIP levels) for
making the mechanism work is a control issue. We will begin by addressing relatively
high-level design topics and will move progressively toward lower-level control topics
throughout the chapter.

14.2.1 Gross Capacity Control

Production control systems work best in stable environments. When demand is steady,
product mix is constani, and processes are well behaved, almost any type of system
(e.g., reorder points, MRP, or kanban) can work well, as shown by the simulation studies
of Krajewski et al. (1987). From a manufacturing perspective, we would like to set up
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production lines and run them at 4 nice, steady pace without disruptions. Indeed, toa large
extent, this is precisely what JIT, with its emphasis on production smoothing and setup
reduction, attempts to do. But efforts to create a smooth, easy production environment
can conflict with the business objectives to make money, grow and maintain market
share, and ensure long-term viability. Customer demand fluctuates, products emerge
and decline, technological competition forces us to rely on new and unstable processes,
Therefore, while we should look for opportunities to stabilize the environment, we must
take care not to lose sight of higher-level objectives in our zeal to do this. We shouldn’t
forgo an opportunity to gain a strategic edge via a new technology simply because the
old technology is moere stable and easier to manage.

Even while we respond 10 market needs, there are things we can do to avoid unnec-
essary volatility in the plant. One way to stabilize the environment in which the SFC
module must operate is to use gross capacity control to ensure that, when running, the
lines are close to optimally loaded. The goal is to avoid drastic swings in line speed by
conirolling the amount of time the line, or past of it, is used. Specific options for gross
capacity control include

1. Varying the number of shifts. For instance, three shifts per day may be used
during periods of heavy demand, but only two shifts during periods of lighter
demand. A plant can vse this option to match capacity to seasonal fluctuations
in demand, However, since it typically involves laying off and rehiring workers,
it is only appropriate for accommodating persistent demand changes (e.g.,
months or more).

2. Varying the number of days per week. For instance, weekends can be used to
meet surges of demand. Since weekend workers can be paid on overtime, a
plant can use this approach on much shorter notice than it can use shift changes.
Notice that we are talking here of planned overtime, where the weekends are
scheduled in advance because of heavy demand. This is in contrast with
emergency overtime used to make up quota shortfalls, as we discussed in
Chapter 13.

3. Varying the number of hours per day. Another source of planned overtime is to
lengthen the workday, for instance, from 8 to 10 hours.

4. Varying staffing levels. In manual operations, capacity can be augmented by
adding workers (e.g., floating workers from another part of the plant, or
temporary hires). In multimachine workstations, managers can alter capacity by
changing the number of machines in use. possibly requiring staffing changes as
well.

5. Using outside vendors. One way to maintain a steady loading on a plant or line
is to divert work beyond a specified level to another firm. Ideally, this transfers
at least part of the burden of demand variability to the vendor.”

As the term gross capacity control implies, these activities can only alter the effective
capacity in a rough fashion. Shifts must be added whole and only infrequently removed.
Weekend overtime may have to be added in specific amounts (e.g., a day or half-day)
due to union rules or personnel policy. Options for varying capacity through ficating
workers are limited by worker skill levels and ioadings in other portions of the plant.
Adding and releasing temporary workers requires training and other expenses, which

20f course, there is no guaranice that a vendor will be able to accommodate varying demand any better
than the firm itself. Moreover, vendors who can are likely to charge for it. So while vendors can be useful,
they are hardly a panacca,
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limits the flexibility of this option. Vendoring contracts may require minimum and/or
maximum amounts of wark to be sent to the vendor, so this approach may remove only
part of the demand variability faced by the firm. Moreover, since finding and certifying
vendors is a time-consuming process, vendor contracts are likely to persist over time.

Despite the limitations of the options discussed, it is important that they, or other
methods, be used to match capacity to demand at least roughly. Huge variations in
the workload of a line will induce tremendous variability throughout the line and will
seriously degrade its performance. Kanban or CONWIP requires fairly steady rate-
driven lines. We will discuss a pull alternative for lines that cannot achieve this type
of stability via gross capacity control. However, no system can entirely mitigate the
negative effects of highly variable demand.

14.2.2 Bottleneck Planning

In Part If we stressed that the rate of a line is ultimately determined by the bottleneck,
or slowest, process. In the simple single-product, single-routing lines we considered
in Chapter 7 to illustrate basic factory dynamics, the bottleneck process represents the
maximum rate of the line. This rate is only achieved when the WIP in the line is allowed
to become large.? as illustrated in Figure 14.2.

In lines where all parts follow the same routing and processing times are such that
the same process is the slowest operation for all parts, the conveyor model is an accurate
representation of reality and useful for analysis, as well as intuition. In such cases, the
bottleneck plays a key role in the performance of the line and therefore should be given
special attention by the SFC module. Because throughput is a direct function of the
utilization of the bottleneck, it makes sense to trigger releases into the line according to
the status of the bottleneck, Such “pull from the bottleneck™ schemes can work well in
some systems, and we will discuss them further.

In spite of the theoretical impertance of bottlenecks, it has been our experience that
few manufacturers can identify their bottleneck process with any degree of confidence.
The reason is that few manufacturing environments closely resemble a single-product,
single-routing kine. Most systems involve multiple products with different processing
times. As a result, the bottleneck maching for one product may not be the bottleneck for

3What is meant by farge, of course, depends on the amount of variability in the line, 3 we noted in
Chapter 9.
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another product. This can cause the bottleneck to “tloat,” depending on the product mix.
Recall that Figure 10.9 illustrated this type of behavior with an example where machine
2 is the bottleneck for product A, machine 4 is the bottleneck for product B, and machine
3 is the bottleneck for a 50-50 mix of A and B.

Multiproduct systems also often involve different routings for different products.
For instance, Figure 14.3 shows a two-routing system with a single shared workstation.
Whether or not machine 3 is the bottleneck for product A depends on the volume of
product B. Similacly. the bottleneck for product B depends on the volume of product
A. Thus, the bottlenccks in this system can also float depending on product mix. Fur-
thermore, if the two product lines are under separate management, the location of the
bottleneck in each line may be outside the control of the line manager,

This discussion has two important implications for design of the SFC module:

1. Stable bottlenecks ure casier to manage. A line with a distinct identifiable bot-
tleneck 1s simpler to model (i.e., with the conveyor model} and control than a line with
multiple moving bottlenecks. A manager can focus on the status of the bottleneck and
think about the rest of the line almost exclusively in terms of its impact on the bottleneck
(i.e., preventing starvation or blocking of the bottleneck). If we are fortunate enough
to have a line with a distinet bottleneck, we should exploit this advantage with an SFC
module that gives the botileneck favorable treatment and provides accurate monitoring
of its status.

2. Bottlenecks can be designed. Although some manufacturing systems have their
bottleneck situation more or less determined by other considerations (e.g., the capacity of
all key processes would be too expensive to change), we can often proactively influence
the bottleneck. For instance, we can reduce the number of potential botilenecks by
adding capacity at some stations to ensure that they virtually never constrain throughput,
This may make sense for stations where capacity is inexpensive.* Or interacting lines
can be separated into cells; for example, the two lines in Figure 14.3 could be separated
by adding an additional machine 3 (or dedicating machines to lines, if station 3 is a
multimachine workstation). This type of cellular manufacturing has become increasingly
popular in industry, in large part because srnall, simple cells are easier to manage than
large, complex plants.

Although it is difficult to estimate accurately the cost benefits of simplifying bottle-
neck behavior, it is clear that there are costs associated with complexity. The simplest
plant to manage is one with separate routings and distinct, steady bottlenecks. Any
departures from this only serve to increase variability, congestion, and inefficiency. This
does not mean that we should automatically add capacity until our plant resembles this
ideal; only that we should consider the motivation for departures from it. If we are

*Note that the idea of deliberately adding capacity that will result in some resources being underutilized
runs counter to the principle of hne balancing. Economic justification of unbalancing the line requires taking
a linewide perspective thar considers variability, as we have stressed throughout this book.
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plagued by a floating bottleneck that could be eliminated via inexpensive capacity, the
addition deserves consideration. If interacting routings could be separated without Iarge
cost, we should look into it,

Moreover, line design and capacity allocation need not be plantwide to be effective.
Sometimes great improvements can be achieved by assigning a few high-volume prod-
uct families to separate, well-designed cells, leaving many low-volume families to an
inefficient job shop portion of the plant, This “factory within a factory” idea has been
promoted by various researchers and practitioners, most prominently Wickham Skinner
(1974), as part of the focused factory philosophy. The main idea behind focused fac-
tories is that plants can do only & few things very well and therefore should be focused
on a narrow range of products, processes, volumes, and markets. As we will see repeat-
edly throughout Part I11, simplicity offers substantial benefits throughout the planning
hierarchy, from low-level shop floor control to long-range strategic planning.

14.2.3 Span of Control

In Chapter 13, we discussed disaggregation of the production planning problem into
smaller, more manageable units. We devoted most of that discussion to disaggregation
along the time dimension, into short-, intermediate-, and long-range planning. But other
dimensions can be important as well. In particular, in large plants it is essential to divide
the plant by product or process in order to avoid overloading individual line managers.

Typically, a reasonable span of control, which usually refers to the number of
employees under direct supervision of the manager, is on the order of 10 employees.
A line with many more workers than this will probably require intermediate levels of
management (foremen, lead technicians, multiple layers of line managers). Of course,
10 is only a rough rule of thumb; the appropriate number of employees under direct
supervision of a manager will vary across plants. Strictly speaking, the term span of
controf should really refer to more than simply the number of subordinates, to consider
the range of products or processes the manager must supervise.

For instance, printed-circuit board (PCB) manufacture involves, among other oper-
ations, a lamination process, in which copper and fiberglass sheets are pressed together,
and a circuitize process, in which the copper sheets are etched to produce the desired
circuitry. The technology, equipment, and logistics of the two processes are very differ-
ent. Lamination is a batch process involving large mechanical presses, while circuitizing
is a combination of a one-board-at-a-time process using optical expose machines and a
conveyorized fiow process involving chemical etching. These differences, along with
physical separation, make it logical to assign different managers to the two processes.

How a line is broken up, for boitleneck design, span of control, or other considera-
tions, is relevant to the configuration of the SFC module. Depending on the complexity
of the line, managers may be able to coordinate movement of material through the portion
of the line for which they are responsible, with very little assistance from the produc-
tion control system. But the managers cannot coordinate activities outside their areas.
Presumably, a higher-level manager has responsibility spanning disparate portions of
the plant (and, of course, the plant manager has ultimate responsibility for the whole
plant). However, at a real-time control level, these higher-level managers cannot force
coordination. This must be done by the line managers, using information provided by
the SFC module.

At 2 minimum, the SFC module must te)l managers what parts are required by
downstream workstations. If the module can also project what materials will be arriving
at each station, so much the better, since this information enables the line managers
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to plan their activities in advance. The division of the line for management purposes
provides a natural set of points in the line for reporting this information. How the line
is divided may also affect the other functions of the SFC module listed in Figure [4.1.
For purposes of accountability, it may be desirable to build in quality checks between
workstations under separate management (e.g., the downstream station checks parts from
an upstream station and refuses to accept them if they do not meet specifications)., Under
these conditions, the links between SFC and quality control must be made with this in
mind.

14.3 CONWIP Configurations

As we observed in Chapter 5, JIT authors sometimes get carried away with the rhetoric
of simplicity, making statements like “Kanban ... can be instalied ... in 15 minutes,
using a few containers and masking tape” (Schonberger 1990, p. 308). As any manager
who has installed a pull system knows, getting a syster that works well is not simple
or easy. Manufacturing enierprises are complex, varied activities. Neither the high-
level philosophical guidelines of “romantic JIT" nor the collection of techniques from
“pragmatic ITT” can possibly provide ready-made solutions for individual manufacturing
environments. With this in mind, we begin our review of possible SFC configurations.
We start with the simplest possibilities, note where they will and won’t work well, and

. move to more sophisticated methods for more complex environments. Since we cannot
discuss every option in detail, our hope is that the range offered here will provide the
reader with a mix-and-match starting point for choosing and developing SFC modules
for specific applications.

14.3.1 Basic CONWIP

The simplest manufacturing environment from a management standpoint is the single-
routing, single-family production line. If the following conditions hold, then this model
is an accurate approximation of rcality, and a basic CONWIP system (where releases
are coordinated with completions to hold the WIP level in the line constant) will work
well in the SFC module, for the reasons discussed in Chapter 10:

1. There are constant routings so that all parts traverse the same sequence of
machines. Actually, if some parts contain a few extra operations (e.g.,
installation of a deluxe feature) that do not substantially alter flow time, we may
be able to ignore this and still use basic CONWIP. However, if routings are
conditional (e.g., jobs may be diverted to a rework line or sent out to a vendor),
then we may not be able to treat the line as a single routing and will require
more than basic CONWIP.

2. Processing times are similar so that all parts require roughly the same amount
of time at each process center. This implies that the bottleneck will be stable.
We do not require that the bottleneck be sharply defined (i.c., significantly
slower than other machines), however.

3. There are no significant setups so that the time through the line for an individual
job is not strongly affected by the sequence of jobs.

4. There are no assemblies, so we can view the progression of jobs as a linear flow.
We will modify basic CONWIP to accominodate assemblies later.
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Perhaps the simplest way to maintain the constani-WIP protocol is by means of
physical cards or containers, as Figure 14.4 illustrates. Raw materials arrive to the line
in standard containers but are only released into the line if there is an available CONWIP
card. These cards can be laminated sheets of paper, metal or plastic tags, or the empty
containers themselves. Since no routing or product information is required on the cards,
they can be very simple. Provided that work is only released into the line with a card,
and cards are faithfully recycled (they don't get trapped with a job diverted for rework
or terminated by an engineering change order), the WIP in the line will remain constant
at the level set by the number of CONWIP cards.

Even in this simple system there are SFC issues to resolve.

1. Work backlog. Because the CONWIP cards do not contain product information,
a line manager or operator needs additional information te select jobs to release into
the line. This is the task of the sequencing and scheduling module, which may use a
simple earliest due date (EDD) sequence (because of the no-setup assumption) or a more
involved batching routine {to achieve a rhythm by working on similar parts for extended
periods). Once generated, the backlog can be communicated to the line in a variety of
ways. The simplest consists of a piece of paper with a prioritized list of jobs. Whenevera
CONWIP card is available, the next job for which raw materjals are available is released
into the line. Some situations may call for more sophisticated work backlog displays,
for example, showing priorities or projected arrival times.

2. Line discipline. In general, a line should maintain a first-in-system first-out
order. This means that, barring yield loss, rework problems, or passing at multimachine
stations, the jobs will exit the line in the same order they were released. Since the
CONWIP protocol keeps the line running at a steady pace, this makes it easy to predict
when jobs—even those still on the work backlog—will be completed. However, if the
CONWIP line is long, there may arise situations in which certain jobs require expediting.
While we wish to discourage incautious use of expediting because it can dramatically
increase variability in the line, it is unreascnable to expect the firm never to expedite.
To minimize the resulting disruption, it may make sense to allow only two levels of
priority and to establish specific passing points. The passing points are buffers or stock
points in the line, typically between segments run as CONWIP loops, where “hot” jobs
are allowed to pass “normal” jobs. The discipline of a workstation taking material from
such a buffer is to take the first job from the hot list, if there is one, and, if not, the
oldest job currently in the buffer. To allow passing only at designated points in the line
makes it easier to build a model {the real-time simulation module) for predicting when
jobs will exit the line. 1f many levels of prionity and unrestricted passing are permitted,
the variability or “churn” in the line can become acute, and it can be almost impossible
to predict line behavior.

CONWIP cards

Production line ‘/

Inbound Outbound
stack stock
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3. Card counts. To be effective, a CONWIP SFC meodule must fix a reasonable
WIP level. As we noted in Chapter 13, setting card counts is a function that should be
done infrequently {e.g., monthly or quarterly), not in real time with the work releases. If
CONWIP is being implemented on an established line, the easiest approach for setting
card counts is to begin with a count that fixes WIP at the historical level, After the line has
stabilized. look at the workstations for persistent queues. If a station’s queuve virtuatly
never empties, then reducing the card count will not have much effect on throughput and
therefore should be done. Muke periodic reviews of queue lengths to adjust card counts
to accommodate phystcal changes (hopefully improvements} in the line. 1f CONWIP
is being implemented on a new line, then 4 reasonable approach is 1o select the WIP
level by choosing a reasonable and feasible cycle time CT and estimating the practical
production rate of the line r/. Then, using Little’s law, set the WIP level as:

WIP = CT x rj

Assuming actual throughput is close to 7, this will set WIP levels appropriately, pro-
vided that CT is actually feasible. Care must be taken not to get overly optimistic about
cycle time, since it will lead to an underestimate of the required WIP and therefore a
reduction in throughput.

4. Card deficits. 1f the card count is sufficiently large relative to variability in the
line, rigidly adhering to the CONWIP protocol can work well. However, there are
situations where we may be tempted to violate the constant-WIP release rule. Figure
14.5 illustrates one such situation, where a nonbottleneck machine downstream from the
bottleneck is experiencing an unusually long failure, causing the bottleneck to starve for
lack of cards. If the nonbottiencck machine is substantially faster than the bottleneck,
then it will easily catch up once itis repaired. Butinthe meantime, we are losing valuable
time at the bottleneck. One remedy for this situation is to run a card deficit, in which we
release some jobs without CONWIP cards into the line. This will allow the bottleneck
to resurne work. Once the failure situation is resolved, we revert to the CONWIP rules
and only allow releases with cards. The jobs without cards will eventually clear the line,
and WIP wili fall back to the target level. Another remedy for this type of problem is to
pull from the bottleneck instead of the end of the line. We discuss this in Section 14.4 .2,

5 Work ahead. One of the benefits of CONWIP that we identified in Chapter 10 is
its ability to opportunistically work ahead of schedule when events permit. For instance,
if the bottleneck is unusually fast or reliable this week, we may be able to do more work
than we had planned. Assuming that the master production schedule is full, it probably
makes sense to take advantage of our good fortune—up to a limit. While it almost
certainly makes sense to start some of next week's jobs, it may not make sense to start
jobs that are not due for months. If the MPS for a particular routing is not full, which is
a real possibility in a plant with many routings, each of which is used sporadically, then
we may want to establish a work-ahead window.

For instance, when authorized by the CONWIP mechanism, we may release the next
job into the line, provided that it is within n weeks of its due date. Setting the limit 1 is an

Jobs withoul cards Jobs with cards

_A0>a0

Bottlensck process Failed machine



464 Part {Il  Principies in Practice

additional CONWIP design question, which is closely related to the concepts of frozen
zones and time fences discussed in Chapter 3. Since jobs within the frozen zone of their
due dates are not subject to change, it makes sense to allow CONWIP to work ahead
on them. Jobs beyond the restricted frozen zone {or partialiy restricted time fences) are
much riskier t0 work ahead on, since customer requirements for these jobs may change.
Clearly, the choice of an appropriate work-ahead policy is strongly dependent on the
manufacturing environment.

14.3.2 Tandem CONWIP Lines

Even if we satisfy the conditions tor basic CONWIP to be applicable (constant routings,
similar processing times, no significant setups, and no assernblies), we may not want to
run the line as a single CONWIP loop. The reason is that span-of-control considerations
may encourage us to decouple the line into more manageable parts. One way to do this is
to contro! the line as several tandem CONWIP loops separated by WIP buffers. The WIP
levels in the various loops are held constant at specified levels. The interloop buffers hold
enough WIP to allow the ioops to temporarily run at different speeds without affecting
{(blocking or starving) one another. This makes it easier for different managers to be in
charge of the different loops. The extra WIP and cycle time introduced by the buffers
also degrade cfficiency. This is a tradeoff one must evaluate in light of the particular
needs of the manufacturing system.

Figure 14.6 illustrates different CONWIP breakdowns of a single production line,
ranging from treating the entire line as a single CONWIP loop to treating each workstation
as 2 CONWIP loop. Notice that this last case, with each workstation as a loop, is identical
to one-card kanban. In a sense, basic CONWIP and kanban are extremes in a continunmt
of CONWIP-based SFC configurations. The more CONWIP loops we break the line
into, the closer its behavior will be to kanban. As we discussed in Chapter 10, kanban
provides tighter control over the material flow through individual workstations and, if
WIP levels are low enough, can promote communication between adjacent stations.
However, because there are more WIP levels to set in kanban, it tends to be more
complex to implement than basic CONWIP. Therefore, in addition to the efficiency/span-
of-control tradeoff to consider in determining how many CONWIP loops to use to control
a line, we should think about the complexity/communication tradeoff.

Another control issue that arises in a line controlled with multiple tandem CONWIP
Joops concerns when to release cards. The two options are (1) when jobs enter the
interloop buffers or (2) when they leave them. If CONWIP cards remain attached to jobs
in the buffer at the end of a loop, then the sum of the WIP in the line plus the WIP in the
buffer will remain constant. Therefore, if WIP in the buffer reaches the level specified
by the card count, then the loop will shut down until the downstream loop removes WIP
from the buffer and releases some cards. As Figure 14.7 illustrates (in loops 1 and 3),
this mechanism makes sense for nonbottleneck loops that are fast enough to keep pace
with the overall line. If we did not link loop 1 to the pace of the line by leaving cards
attached to jobs in the buffer, it could run far ahead of other loops, swamping the system
with WIP.

If one loop is a clearly defined bottleneck, however, we may want to decouple it
from the test of the line, in order to let it run as fast as it can (i.e., to work ahead). As
loop 2 in Figure 14.7 illustrates, we accomplish this by releasing cards as soon as jobs
exit the end of the line—before they enter the downstream buffer. This will let the loop
run as fast as it can, subject to availability of WIP in the upstream buffer and subject to
a WIP cap on the total amount of inventory that can be in the line at any point in time.
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Of course, this means that the WIP in the downstream buffer can float without bound,
but as long as the rest of the line is consistently faster than the bottleneck loop, the faster
portion wil) catch up and therefore WIP will not grow too large. Of course, in the long
run, all the CONWIP loops will run at the same speed, that set by the bottleneck loop.

14.3.3 Shared Resources

While it is certainly simplest from a logistics standpoint if machines are dedicated to
routings—and this is precisely what is sometimes achieved by assigning a set of product
families to manufacturing cells—other considerations sometimes make this tinpossible.
For instance, if a certain very expensive machine is required by two different products
with otherwise separate routings, it may not be economical to duplicate the machine
in order to completely separate the routings. The result will be something like that
illustrated previously in Figure 14.3. If several multiple resources are shared across
many routings, the situation can become quite complex.

Shared resources complicate both control and prediction of CONWIP lines. Control
is complicated at a shared resource because we must choose 2 job to work on from
multiple incoming routings. If the shared resource is in the interior of a CONWIP loop,
then the natural information 0 use for making this choice is the “age” of the incoming
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jobs. The proper choice is to work on jobs in FISFO (first-in-system firsi-out) order,
because the time a job entered the line corresponds to the time of a downstream demand,
as it is a pull system. Hence FISFO will coordinate production with demand.

If it is important to ensure that the shared resource works on jobs imminently needed
downstream, then it may make sense to break the line into separate CONWIP loops
before and after the shared resource, as Figure 14.8 illustrates. This figure shows two
routings, for product families A and B, that share a common resource. Both routings
are treated as CONWIP loops before and afier the common resource. This provides the
common resource with incoming parts in the upstream buffers, and with cards indicating
downstream replenishment needs. Working on jobs whose cards have been waiting
longest (provided there are appropriate materials in the incoming buffer) is a simple way
to force the shared resource to work on parts most likely to be needed soon. If a machine
setup is required to switch between families, then an additional rule about how many
parts of one family to run before switching may be required.

Shared resources also complicate prediction. While the conveyor model can be
quite accurate for estimating the exit times of jobs from a single CONWIP line, it is not
nearly as accurate for a line with resources shared by other lines. The reason is that the
outputs from one line can strongly depend on what is in the other lines. A simple way
to adapt the conveyor model to approximate this situation is to preallocate capacity. For
example, suppose two CONWIP lines, for product families A and B, share a common
resource, where on average family A utilizes 60 percent of the time of this resource and
faruily B utilizes 40 percent. Then we can roughly treat the line for family A by inflating
the process times on the shared resource by dividing them by 0.6 to account for the fact
that the resource devotes only 60 percent of its time to family A, Likewise, we treat the
line for family B by dividing processing times on the shared resource by 0.4.

To illustrate this analysis in a little greater detail, suppose that the shared resource
in Figure 14.8 requires one hour per job on routing A and two hours per job on routing
B. If 60 percent of the jobs processed by this resource are from routing A and 40 percent
are from B, then the fraction of processing hours (hours spent ranning product) that are
devoted to A is given by

1 x0.6
F x06+2x04

Therefore, the fraction of processing hours devoted to B is 1 — 0.4286 = 0.5714. The
42.86 percent nurnber is very much like an availability caused by machine outages. In
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effect, the resource is available to A only 42 86 percent of the time. Thus, while the rate
of the shared resource would be one job per hour if only A parts were run, it is reduced
to 1 > 0.4286 job per hour due to the sharing with B. The average processing time is the
inverse of this rate, or 1/0.4286 = 2.33 hours per job. Similarly, the average processing
ofaB jobis

—— =3 i
05714 50 hours per job

Using these inflated processing times for the shared resource, we can now treat
routings A and B as entirely separate CONWIP lines for the purposes of analysis. Of
course, if the volumes on the two routings fluctuate greatly, then the output times will
vary substantially above and below those predicted by the conveyor model. The effect
will be very much the same as having highly variable {e.g., long infrequent, as opposed
to short frequent) outage times on a resource in a CONWIP line. Therefore, il we use
such a model to quote due dates, we have to add a larger inflation factor to compensate
for this extra variability.

14.3.4 Multiple-Product Families

We now begin relaxing the assumptions needed (o justify basic CONWIP by considering
the situation where the line has multiple-product families. We still assume a simple flow
line with constant routings and no assemblies, buk naw we allow different product families
to have substantially different processing times and possibly sequence-dependent setups.
Under these conditions, it may no longer be reasonable to fix the WIP level in a CONWIP
loop by holding the number of units in the line constant. The reason is that the total
workload in the line may vary greatly due to the difference in processing times across
products. It may make more sense to adjust the WIP count for capacity.

One plausible measure of the work in the system would be hours of processing
time at the bottieneck machine. Under this approach, if a unit of product A requires
one hour on the bottleneck and B requires two hours, then when one unit of B departs
the line, we allow two units of product A 1o enter (provided that it is next on the work
backlog). As long as the location of the bottleneck is relatively insensitive to product
mix, this mechanism will tend to maintain & stable workload at the bottieneck. If the
bottleneck changes with mix (i.e., different products have different machines as their
slowest Tesource), then computing a capacity-adjusted WIP level is more difficult. We
could use total hours of processing time on all machines. However, we will probably
need a higher WIP level than would be required for a system with a stable bottleneck,
to compensate for the variability caused by the moving bottleneck. Furthermore, if the
tota} processing times of different products do not vary much, this approach will not be
much different from the simpler approach of counting WIP in physical units.

If we count WIP in capacity-adjusted standard units, it becomes more difficult to
control the WIP level with a simple mechanism like cards. Instead of trying to attach
multiple cards to jobs to reflect their differing complexity, it probably makes sense to
use an electronic system for monitoring WIP level. Figure 14.9 illustrates an electronic
CONWIP controller, which consists of a local-area network (LAN) with computers
located at the front and back of the line. The computers monitor the adjusted WIP level
and indicate when it falls below the target level (e.g., by changing an indicator light from
red to green). When this happens, the operator of the first workstation selects the next
job on the work backlog for which the necessary materials are available {displayed on
the computer terminal as showing the due date, DD, part number, PN, and quantity to be
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FiGURE 14.9

A CONWIP line using
electronic signals

Ficure 14.10

CONWIP control of an
assembly process
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released, (Quant)) and releases it into the line. This release is recorded by keyboard or
optical scanner and is added to the capacity-adjusted WIP level. At the end of the line,
job outputs are also recorded and subtracted from the WIP level. Exceptions, such as
fallout due to yield loss, may also need to be recorded on one of the computer terminals.

14.3.5 CONWIP Assembly Lines

We now further extend the CONWIP concept to systems with assembly operations. Fig-
ure 14.10 illustrates the simple situation in which an assembly operation is fed by two
fabrication lines. Each assembly requires one subcomponent from family A and one
subcomponent from family B. The assembly operation cannot begin until both subcom-
ponents are available. The two fabrication lines are controlled as CONWIP loops with
fixed, but not necessarily identical, WIP levels. Each time an assembly operation is
completed, a signal (e.g., CONWIP card or electronic signal) triggers a new relcase in
each fabrication line. As long as a FISFQ protocol is maintained in the fabrication lines,
the final assembly sequence will be the same as the release sequence.

Notice that assembly completions need not trigger releases of subcomponents des-
tined for the same assembly. If line A has a WIP level of 9 jobs and line B has a WIP
level of 18 jobs, then the release authorized by the next completion into line A will be
used 9 assemblies from now, while the release into line B will be used 18 assemblies
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from now. If the total process time for line B is longer than that for line A, this type of
imbalance makes sense. In general, the longer line will require a larger WIP level (i.e.,
because of Little’s law). Determining precise WIP levels is a bit trickier. Fortunately,
performance is robust in WP level, provided that the lines have sufficient WIP to prevent
excessive starvation of the bottleneck.

To illustrate a mechanism for setting ballpark WIP levels in an assembly system,
consider the data given in Figure [4.10. Notice that the systemwide bottleneck is machine
3 of line A. Hence, the bottleneck rate is rp = 0.25 job per hour. If we look at the two
lines, including assembly, as separate fabrication lines, we can use the critical WIP
formula from Chapter 7 on each line. This shows that the WIP levels under ideal (i.e.,
perfectly deterministic) conditions need to be

We=nTf=3C+1+4+1)=3=2
WE=nTl=13+3+2+34+1=1=3

to achieve full throughput. Of course, in reality, there will be variability in the line, so
the WIP levels will need to be larger than this. How much larger depends on how much
variability there is in the line.

For a line comresponding to the practical worst case discussed in Chapter 7, we
can compute the WIP level required to achieve throughput equal to 90 percent of the
bottleneck rate by setting the throughput expression equal to 0.9r, and solving for the

WIP level w:
d 0.9
————r, = 0.9r
Wt}+w—1b b
L
Wo+w-—-1

w=09Wo+w—1)
w=9Ws — 9 =9(Wo — 1)
Inflating W and W§ according to this formula yields
wt =92 -1)=9
wf=93-1=18

Unless the line is highly variable, these WIP levels are probably reasonable starting
points, from which a process of adjustment can be initiated. If the processing times on
all the machines are less variable than the practical worst case (i.e., they have coefficients
of variation smaller than one), then the line may operate effectively with smaller WIP
levels than this. If the processing times on some machines are move variable than the
practical worst case (i.c., they have coefficients of variation larger than one, due to long
failures or setups, for example), then even more WIP than this may be required to achieve
a reasonable throughput rate.

14.4 Other Pull Mechanisms

We look upon CONWIP as the first option to be considered as an SFC platform. It is
sitnple, predictable, and robust. Therefore, unless the manufacturing environment is
such that it is inapplicable, or another approach is likely to produce substantially better
performance, CONWIP is a good, safe choice. By using the flexibility we discussed
above to split physical lines into multiple CONWIP loops, one can tailor CONWIP 10
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the needs of a wide variety of environments. But there are situations in which a suitable

SFC module, while still a pull system, is not what we would term CONWIP. We discuss
some possibilities bejow.

As we noted earlier, kanban can be viewed as tandem CONWIP loops carried to the
extreme of having only a single machine in each loop. So from a CONWIP enthusiast’s
perspective, kanban is just a special case of CONWIP. However, Ohno’s book contains a
diagram of a kanban system that looks very much like a set of CONWIP loops feeding an
assembly line. Therefore, the developers of kanban may well have considered CONWIP
a form of kunban. As far as we are concerned, this distinction is a matter of semantics;
kanban and CONWIP are cbviously closely related. The important question concerns
when to use kanban (single-station loops) instead of CONWIP (multistation loops).
Kanban offers two potential advantages over CONWIP:

1. By causing each statien to pull from the upstreamn station, kanban may force
better interstation communication. Although there may be other ways to
promote the same communication, kanban makes it almost automatic.

2. By breaking the line at every station, kanban naturally provides a mechanism
like that illustrated in Figure 14.8, for sharing a resource among different
routings.

However, kanban also has the following potential disadvantages:

1. It is more complex than CONWIP, requiring specification of more WIP levels.
{However, recall that pull systems are fairly insensitive to WIP level. Hence,
the WIP levels in kanban need not be set precisely for the system to function
well, and therefore this increase in complexity may not be a major obstacle to
kanban in most seftings.)

2. It induces a tighter pacing of the line, giving operators less flexibility for
working ahead and placing considerable pressure on them to replenish buffers
quickly.

3. The use of product-specific cards means that at least one standard container of
each part number must be maintained at each station, to allow the downstream
stations to pull what they need. This makes it impractical for systems with
numerous part numbers.

4. Tt cannot accommedate a changing product mix {(unless a great deal of WIP is
loaded into the system) because the product-specific card counts rigidly govern
the mix of WIP in the system.

5. Tt is impractical for small, infrequent orders (enesies and twosies). Either WIP
would have to be left unused on the floor for long spans of time (i.¢., between
orders), or the system would be unresponsive to such orders because
authorizations signaled by the kanban cards would have to propagate all the
way to the beginning of the line to trigger new releases of WIF.

There is little one can do to alleviate the first two disadvantages; complexity and
pressure are the price one pays for the additional local control of kanban, However, the
remaining disadvantages are a function of product-specific cards and therefore can be
mitigated by using routing-specific cards and a work backlog. Figure 14.11 shows
a kanban system with different-color cards for different routings. When a standard
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container is remaved from the outbound stock point, the card authorizes production to
replace it. The identity of the part that will be produced is determined by the work
backlog, which must be established by the sequencing and scheduling module. If a part
does not appear on the backlog fur an extended period, then it will not be present in the
line. The modification of route-specific (as opposed to part-specific) cards enables this
approach to kanban to be used in systems with many part numbers.

On the basis of this discussion, it would appear that kanban is best suited to systems
with many routings that share resources, especially if products and routings are frequently
added and removed. If we are going to break the line into many CONWIP loops to
make control of the shared resources easier, then moving all the way to kanban will
not significantly change performance. Moreover, if a new routing converts a previously
unshared resource to a shared resource, then a kanban configuration will already provide
the desired break in the line,

On the other hand, if the various routings have few shared resources and new products
tend to follow established routings, there would seem to be little incentive to incur
the additional complexity of kanban. The system will probably function more simply
and effectively under CONWTP, possibly broken into separate loops for span-of-control
reasons, to give special treatment to a shared resource, or to feed buffers at assembly

points.

14.4.2 Pull-from-the-Bottleneck Methods

Two problems that can arise with CONWIP {or kanban) in certain environments are the
following:

1. Bottleneck starvation due to downstream machine failures. As we illustrated in
Figure 14.5, we may want to allow releases beyond those authorized by cards to
compensate for this situation.

2. Premature refeases due to the requirement that the WIP level be held constant.
Even if a part will not be needed for months, a CONWIP system may trigger its
release because WIP in the loop has fallen below its target level. This can
reduce flexibility for no good reason (e.g., engineering changes or changes in
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customer nieeds are much more difficult to accommodate once a job has been
released to the floor).

We can madify CONWIP ta address these situations. The basic idea is to devise a
mechanism for enabling the bottleneck to work ahead, but at the same time provide a
means of preventing it from working too far ahead. The techniques we will introduce are
related to the technique termed drum-buffer-rope (DBR} developed by Goldratt (Gol-
dratt and Fox 1986}, although he presented DBR primarily as a scheduling methodology
rather than an SFC mechanism.

We begin with the simplest version of the pull-from-bottleneck (PFB) strategy.
Figure 14.12 shows such a system for a single line. This mechanism differs from CON-
WIP in that the WIP level is held constant in the machines up to and including the bot-
tleneck, but is allowed to float freely past the bottleneck. Since machines downstream
from the bottleneck are fasier on average than the bottleneck, WIP wilt not usually build
up in this portion of the line. However, if a failure in one of these machines causes a
temporary buildup of WIP, it wiil not cause the bottleneck to shut down, as can occur
under CONWIP if card deficits are not used. Therefore, a PFB approach may make
sense as an alternative 0 card deficits in a line with a stable bottleneck. If the bottleneck
shifts depending on product mix, then it is not clear where the pulling point should be
located, and therefore one may be just as well off pulling from the end of the line (i.e.,
using regular CONWIP), possibly with a card deficit policy.

The simple PFB approach of Figure 14.12 can mitigate the bottleneck starvation
problem associated with CONWIP, but does not address the issue of premature releases.
When we are talking about a single line, we often speak as though the line will be kept
running at close to full capacity, And this is frequently true in plants with few routings.
But in plants with many routings (e.g., a plant tending toward a job shop configuration),
some routings may not be used for substantial periods of time. For instance, we have
seen plants with 5,000 distinct routings, only a relative few of which contained WIP at
any given time. Clearly, under these conditions we do not want to maintain a constant
WIP level along the routing, since this would result in releasing jobs that are not needed
until far in the future.

Consider the situation illustrated in Figure 14.13, which shows four distinct product
routings, three of which pass through the bottleneck. The goal of a PFB strategy is to
ensure that jobs are released so that they arrive at the bottleneck a specified time before
they are needed (i.e., so that waiting jobs will form a buffer in front of the bottleneck to
prevent random variations from causing it to starve),

To make our approach precise, let

b, = time required on bottleneck by job i on backlog. Note that jobs on
different routings may have different processing times, and there may even
be different families within same routing having different processing times.

£; = average time after release required for job i to reach bottleneck. Note that
this time involves processing on nonbottleneck resources only. Since most
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of queueing will occur at bottleneck, this time should be relatively constant
for a given routing.> However, these times may differ substantially across
routings.

L = specified time for jobs to wait in buffer in front of bottleneck. This is a
user-specificd constant that depends on how much time protection is desired
at bottleneck.

Now we can compute the amount of work at the bottleneck in the line by summing the b;
values. Suppose that the work backlog contains jobs in the sequence they will be worked
on at the bottleneck, and suppose job 1 represents the current job being worked on at
the bottleneck (where by represents its remaining processing time). Then the amount of
time until the bottleneck will be available to work on job j is

Ji
b
i=1
Our goal is to release jobs on the backlog so that they will wait L ume units in front

of the bottleneck. Since job j takes £; on average to get to the bottleneck, we should

5Thig is in sharp contrast with MRP, which assumes constant lead times through the entire plant
including the bostleneck. Because MRP does not maintain constant loadings on the plant, actual cy<le times
can vary greatly, making the constant-lead-time assumption very poor.
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release job j whenever

i1
be =&+ L
=1
Therefore, if we track the number
=1
Y obi-t,-L (14.1)
i=1

for every job on the backiog and release jobs when this guantity hits (or goes below)
zero, we will maintain a constant workload on the bottleneck and jobs should arrive on
average L time units before they are needed at the bottleneck. As long as L is large
enough to prevent significant delays at the bottleneck, the actual work sequence at the
bottleneck should be able to match the sequence on the work backlog reasonably well.

Notice that if the £, lead times differ for different routings, then the release sequence
may be different from the sequence on the work backlog. All other things being equal,
a job with a large £, will be released earlier than a job with a small £;, as one would
expect, since its index in Equation {14.1) will go negative sooner. Furthermore, since
the work backlog may have intervals during which no jobs along certain routings are
required, this system may let WIP along some routings fall to zero at some points. Thus,
while this mechanism induces a WIP cap it is not CONWIP in the sense of maintaining
constant loadings along routings.

The PFB logic we have described so far is fine for routings 2, 3, and 4, but does
not cover routing 1, which does not run through the botdeneck.® A sensible approach
for this routing is to control it as a CONWIP loop. This will be effective as long as the
need for parts from routing 1 is relatively stable. If the final assembly sequence contains
intervals during which there is no need for routing 1 parts, then we might want to modify
the CONWIP Iogic to include a requirement that the part be required within a certain
time window (e.g., a2 week) before releasing it, Thus, we would release jobs when both
the WIP level in routing 1 fell below its target level and the next part was needed within
a specified time window.

14.4.3 Shop Floor Control and Scheduling

This last paint about holding parts out until they are within a window of their due date
makes it clear that there is potentially a strong link between the shop floor control module
and the sequencing and scheduling module, If we have generated a schedule using the
sequencing and scheduling module, then we can control individual routings by releasing
jobs according to this schedule, subject to a WIP cap. That is, jobs will be released
whenever the (capacity-adjusted) WIP along the routing is below the target level and
a job is within a specified time window of its scheduled release date. If the schedule
contains enough work to keep the routing fully loaded, this approach is equivalent to
CONWIP. If there are gaps in the schedule for products along a routing, then the WIP
level along that routing may fall below the target level, or even to zero.

A variety of scheduling systems could be used in conjunction with a WIP cap
mechanism in this manner. We will discuss scheduling approaches based on the conveyor
model that are particutarly well suited to this purpose in Chapter 15. But one could also

80Observe that although routings 2 and 3 share nonbottleneck resources, we do not consider this in the
release mechanism. As long as these shared resources are not close to being bottlenecks, this will probably
work well. However, if these resources can become bottlenecks depending on the product mix, more
complex scheduling and release methods may be required. We will discuss this in Chapter 15.
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use something less ideal, such as MRP. The planned order releases generated by MRP
represent a schedule. Instead of following these releases independently of what is going
on in the factory, one could block releases along routings whose WIP levels are too high,
and move up releases (up to a specified amount) along routings whose WIP levels are
too low. The fixed-lead-timc assumption of MRP will still tend to make the schedule
inaccurate. But by forcing compliance with a WIP cap, this SFC approach will at least
prevent the dreaded WIP explosion. The benefits of capping WIP in an MRP system
were pointed out long ago in the MRP literature (Wight 1970), but mechanisms for
actually achieving this have been rare in practice.

14.5 Production

Tracking

As we mentioned, the SFC module is the point of contact with the real-time evolution of
the plant. Therefore, it is the natural place to monitor plant behavior. We are interested
in both the short term, where the concern is making schedule, and the long term, where
the concern is collecting accurate data for planning purposes. Although individual plants
may have a wide range of specific data requirements, we will restrict our attention to two
generic issues: monitoring progress toward meeting our schedule in the short term, and
tracking key capacity parameters for use in other planning modules in the long term.

14.5.1 Statistical Throughput Control

In the short term, the primary question concerns whether we are on track to make our
scheduled commitments. If the line is running as a CONWIP loop with a specified
production quota, then the question concerns whether we will make the quota by the end
of the period (e.g., by the end of the day or week). If we are following a schedule for
the routing, then this depends on whether we will be on schedule at the next overtime
opportunity. If there is a good chance that we will be behind schedule, we may want
to prepare for overtime (notify workers). Alternatively, if the SFC module can provide
early enough warning that we are seriously behind schedule, we may be able to reallocate
resources or take other corrective action to remedy the problem.

We can use techniques similar to those used in statistical process control (SPC) to
answer the basic short-term production tracking questions. Because of the analogy with
SPC, we refer to this function of the SFC module as statistical throughput control
(STC). To see how STC works, we consider production in a CONWIP loop during a
single production period. Common examples of periods are (1) an eight-hour shift (with
a four-hour preventive maintenance period available for gvertime), (2) first and second
shifts (with third shift available for overtime), and (3) regular time on Monday through
Friday (with Saturday and Sunday available for overtime).

We denote the beginning of the period as time 0 and the end of the regular time
period as time R. At any intermediate point in time ¢, where 0 < ¢ < R, we must
compare two pieces of information:

n, = actual curulative production by line, possibly in capacity-adjusted
units, in time interval [0, ¢]
S, = scheduled cumulative preduction for line for time interval [0, ¢]
First, note that since S, represents cumulative scheduled production, it is always

increasing in ¢. However, if we are measuring actual production at a point in the routing
prior to an inspection point, at which yield fallout is possible, then n, could potentially
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decrease. Second, note that if the line uses a detailed schedule, S; may increase unevenly.
However, if it uses a periodic production quota, without a detailed schedule, so that the

target is to complete ¢ units of production by time R, then we assume that §, is linear
(i.e., constant) on the interval, so that

!
Sr=Q§

and hence Sy = . Figure 14.14 illustrates two possibilities for ;.

Ideally, we would like actual production r, to equal scheduled production §; at every
point in time between 0 and R. Of course, because of random variations in the plant,
this will virtually never happen. Therefore, we are interested in characterizing how far
ahead of or behind schedute we are. We could plot n, — S; as a function of time 1, to
show this in units of production. When n, — §; > 0, we are ahead of schedule; when
n, — 8, < 0, we are behind it. However, the difference between n, and §, does not give
direct information on how difficult it will be to make up a shortage or how much cushion
is provided by an overage. Therefore, a more illuminating piece of information is the
probabiliry of being on schedule by the end of the regular time period, given how far we
are ahead or behind now.

In Appendix 14A we derive an expression for this probability under the assumption
that we can approximate the distribution of production during any interval of time by
using the normal distribution. From a practical implementation standpoint, however, it
is convenient to use the formula from Appendix 14A to precompute the overage levels
(that is, n, — ;) that cause the probability of missing the quota to be any specified level
¢. If we know the mean and standard deviation of production during regular time {in
capacity-adjusted units), denoted by p and o, this can be accomplished as follows.

Define x to be

_ (w-R-1) o R—1
- R “Y R
where z, is found from a standard normal table such that ®(z4) = o We show in
Appendix 14A that if the overage level at time ¢ is equal to x (that is, n, — S; = x), then
the probability of missing the quota is exactly a. If n, — S, > (<) x, then the probability
of missing quota is less than (greater than) a.
We can display this information in simple graphical form. Figure 14.15 plots the x
values for specific probabilities of missing the quota. We have chosen to display thesc

(14.2)

16,000 -
14,000

12,000

10,000

8,000 ’

T

6,000

Production (units)
-

4 - == Quota
4,000 ’ —— Schedule
2,000 o

T
~

T
Y




FiGURE 14,15
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curves for probabilities of 5 percent, 25 percent, 50 percent, 75 percent, and 95 percent.
In this example we are assuming a production quota, where regular time consists of two
shifts, for a total of 16 hours, and historical data show that average production during
16 hours is 15,000 units and o = 2,000 units. Quota is set equal to average capacity.
That is, S, = Q//R, where @ = pu = 15,000. The curves in Figure 14.15 give an
at-a-glance indication of how we stand relative o making the quota. For instance, if
the overage level at time ¢ (that is, 5, — S,) lies exactly on the 75 percent curve, then
the probability of missing the quota is 75 percent. On the basis of this information, the
line manager may take action (e.g., shift workers) to speed things up. ¥ », — 5 rises
above the 50 percent mark, this indicates that the action was successful. If it falls, say,
below the 95 percent mark at time 7 = 12, then making the quata is getting increasingly
improbable and perhaps it is time to announce overtime.

Notice that in Figare 14.15 the critical value (that is, x) for & = 0.5 is always zero.
The reason for this is that since the guota is set exactly equal o mean production, we
always have a 50-50 chance of making it when we are exactly on time. The other critical
values follow curved lines. For instance, the curve for o = 0.25 indicates that we must
be quite far ahead of scheduled production early in the regular time period to have only
225 percent chance of missing the quota, but we must only be a little ahead of schedule
near the end to have this same chance of missing the quota. The reason, of course, is that
near the end of the period we do not have much of the quoia remaining, and therefore
less of a cushion is required to improve our chances of making it.

The Chapter 13 discussion on setting production quotas in pull systems pointed out
that it may well be economically attractive to set the quata below mean regular time.
When this is the case, we can still use Bquation (14.2) to precompute the critical values
for various probabilities of missing the quota. Figure 14.16 gives a graphical display
of a case with a quota 3 = 14,000 units, which is below mean regular time capacity
4o = 15,000 units. Notice that in this case, if we start out with no shortage or overage
(that is, g ~ Sg = D), then we begin with a greater than 50 percent chance of making the
quota. This is because we have set the quota below the amount we can mnake on average
during a regular time period. Since 0 < j, on average we should be able to achieve
a pace such that n; ~ §, goes positive and continues to increase, that is, until the quota
is reached and either production stops ar we work ahead on the next period’s quota. If
something goes wrong, so that we fail to exceed the pace, then the position of then, — &
curve allows us to determine at a glance the probability of making the quota, given that
we achieve historical average pace from time 7 until the end of regular time.
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FiGure 14.16

An STC chart when the
quota is less than capacity
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STC charts like those illustrated in Figures 14.13 and 14.16 can be generated by
using Equation (14.2) and data on actua! production (that is, n,), The computer terminals
of the CONWIP contreller (see Figure 14.9) are a natural place to display these charts
for CONWIP lines. STC charts can also be maintained and displayed at any critical
resource in the plant. .

STC charts can be useful even if », is not tracked in real time. For instance, if regular
time consists of Monday through Friday and we only get readings on actual throughput
at the end of each day, we could update the STC chart daily to indicate our chances for
achieving the quota.

Finally, STC charts can be particularly useful at a critical resource that is shared
by more than one routing. For instance, a system with two different circuit board lines
running through a copper plating praocess could maintain separate STC charts for the
two routings, Line managers could make decisions about which routing to work on
from information about the yuota status of the two routings. If line 1 is safely ahead
of the quota, while line 2 is behind, then it makes sense to work on line 2 if incoming
parts are available. Of course, we may need to use the information from the STC charts
judiciously, to avoid rapid switches between lines if switching requires a significant
setup,

14.5.2 Long-Range Capacity Tracking

In addition to providing short-term information to workers and managers, a production
tracking system should provide input to other planning functions, such as aggregate and
workforce planning and quota setting. The key data needed by these functions are the
mean and standard deviation of regular time production of the plant in standard units
of work, Since we are continually monitoring output via the SFC module, this is a
reasonable place to collect this information,

In the following discussion, we assume that we can observe directly the amount of
work {in capacity-adjusted standard units, if appropriate) completed during regular time.
In arigid quota system, it which work is stopped when the quota is achieved, even if this
happens before the end of regular time, this procedure should nof be used, since it will
underestimate true regular time capacity. Instead, data should be collected on the mean
and standard deviation of the time to make guota, which could be shorter or longer than
the regular time period, and convert these to the mean and standard deviation of regular
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time production. The formulas for making this conversion are given in Spearman et al.
{1989).

Since actual production during regular time is apt to fluctuate up and down due to
random disturbances, it mikes sense to smooth past data to produce estimates of the
capacity parameters that are not inordinately sensitive (o noise. The technique of expo-
nential smoothing (Appendix 13A) is well suited to this task. We can use this method
to take past observations of output to predict future capacity.

Let z and ¢ represent the mean and standard deviation, respectively, of regular time
production. These are the quantities we wish fo estimate from past data. Let ¥, represent
the nth observation of the amount produced during regular time, /() represent the nth
smoothed estimate of regular time capacity, Tin) represent the nth smoothed trend, and
a and B represent smoothing constants. We can iteratively compute ji{n) and T{n) as

G =alty, =0 ~a)am - +Tem -1 (14.3)
T = plin) = e = D)+ (A= T = 1) (14.4)

At the end of each regular time period, we receive a new observation of output ¥, and
can recompute our estimate of mean regular time capacity [ (n). To start the method, we
need estimates of (0} and T {0). These can be reasonable guesses or statistical estimates
based on historical data. Depending on the values of o and 8, the effect of these initial
values of (i(0) and 7(0) will “wash out” after 2 few actual abservations.

Because we are making use of exponential smoothing with a tread, the system can
also be used to chart improvement progress. The trend T is a goad indicator of
capacity improvements. If positive, then average output is increasing. In a seil-ali-you-
can-make environment, higher mean capacity will justify higher production quotas and
hence greater profits.

Recall that cur compuiation of economic production guotas in Chapter 13 required
the mean p—and standard deviation o—of regular time production. We can use ex-
ponential smoothing to track this parameter as well. Since variance is 2 much noisier
statistic to track than the mean, it is more difficult to track trends explicitty. For this
reason, we advocate using exponential smoothing with no trend.

Let ¥, represent the nth observation of the amount produced during regular time
production, £1(») represent the nih estimate of mean regular time capacity, and y denote
a smoothing constant. Recall that the definition of variance of a random variable X is

Var(X) = El(X ~ E[XD]

After the nth observation, we have estimated the mean of regular time capacity as i (n).
Hence, we can make an estimate of the variance of regular time capacity after the nth

observation as

Y
{¥, - ji(m)]
Since these estimnates will be noisy, we smooth them with previous estimates to get
- " 12 N
&2m =y [Y, = am) + (L - netn - 1) (14.5)

as our nth estimate of the variance of reguiar time production,

As usual with exponential smoothing, an estimate of &%(0) must be supplied to
start the iteration. Thereafter, each new observation of regular time output yields a new
estimate of the variance of regular time production. As we observed in Chapter 13,
smaller variance enables us to set the quota closer to mean capacity and thereby yields
greater profit. Therefore, a downward trend in #2(n} is a useful measure of an improving

production sysiem,
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We now illustrate these calculations by means of the example described in Table
14.1. Regular time periods consist of Monday through Friday (two shifts per day), and
we have collected 20 weeks of past data on weekly output. As a rough starting point we
optimistically estimate capacity at 2,000 units per week, so we set i(0) = 2,000. We
have no evidence of a trend, so we set f‘(O) = (. We make a guess that the standard
deviation of regular time production is around 100, so we set 42(0) = 100* = 10,000,
We will choose our smoothing constants to be

a=0.35
=02
A=04

Of course, as we discussed in Appendix 134, choosing smoothing constants is something
of an art, so trial and error on past data may be required to obtain reasonable values in
actual practice.

Now we can start the smoothing process. Regular time production during the first
period is 1,400 units, so using Equation (14.3), we compute our smoothed estimate of
mean regular time capacity as

Al = ol + (1 —)[E0) + TO)

= 0.5(1,400) 4+ (1 — 0.5)(2,000 + 0)
= 1,700

TapLE 14,1 Exponential Smoothing of

Capacity Parameters
n Y, gy T #@ )
6 — 20000 00 10,0000 1000
1 1,400 17000 —600 420000 2049
21,302 14710 938 366244 1914
1 1,600 14886 —71.5 269386 164.1
4 2100 1,7585 ~32 628011 2506
5 1,800 17777 1.2 37,8804 1946
6 2,150 19644 384 365000 190
7 2450 22264 831 41,8088 2047
8 2200 22547 721 263377 1623
9 2600 24634 994 232632 1525
10 2,100 23314 532 353826 18Rl

—
—
N
[
B

2,292.3 347 246367 1570
i2 2,600 24635 620 222357 1491
13 2,800 2,662.7 89.4 20,877.2 1445
14 2300 25264 442 32,9738 1816
15 2900 27352 772 30,653.1 1751

16 2,800 2,806.2 76.0 18407.1 1357
17 2,650 2,766.1 527 164330 1282
18 3,000 29094 709 13,1427 1146
19 2,750 2,865.1 478 13,188.1 1148
20 3,150 3,031.5 71.5 13,5310 1163
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Similarly, we use Equation (14.4) to compute the smoothed trend as

T(1) = BLa(l) — 4] + (1 — AT ()
== 0.2(1,700 — 2,000) + (1 — 0.2)¢0)
= —B60

Finally, we use Equation (14.5) to compute the smoothed estimate of variance of
regular time production as

GH1) = (¥ — AP + (1 — y)a%(0)
= 0.4(1,400 — 1,700)? = (1 — 0.4)(10,000)
= 42,000

Thus, the smoothed estimate of standard deviation of regular time production is a{l) ==
/42,000 = 204.9.

We can continue in this manner to generate the numbers in Table 14.1. A convenient
way to examine these data is to plot them graphically. Figure 14.17 compares the
smoothed estimates with the acinal values of regular time production. Notice that the
smoothed estimate follows the upward trend of the data, but with less variability from
period to period (it is called smoothing, after all). Furthermore, this graph makes it
apparent that our initial estimate of regular time capacity of 2,000 units per week was
somewhat high. To compensate, the smoothed estimate trends downward for the fiest
few periods, until the actual upward trend forces it up again.

These trends can be directly observed in Figure 14.18, which plots the smoothed
trend after each period. Because of the high initial estimate of £(0), this trend is initially
negative. The eventual positive trend indicates that capacity is increasing in this plant, a
sign that improvements are having an effect on the operation.

Finally, Figure 14.19 plots the smoothed estimate of the standard deviation of reg-
ular time production. This estimate appears to be constant or slightly decreasing. A
decreasing estimate is an indication that plant improvements are reducing variability in
output. Both this and the smoothed trend provide us with hard measures of continual
improvement,

Regulsr time produaction
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FIGURE 14.18
Exponential smoothing of
trend in mean regular time
capacity

FiGuURE 14.19
Exponential smoothing of
variance of reguiar time
capacity
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14.6 Conclusions

In this chapter, we have spent a good deal of time discussing the shop floor control (SFC)
module of a production planning and control (PPC) system. We have stressed thata good
SFC module can do a great deal more than simply govern the movement of material into
and through the factory. As the lowest-level point of contact with the manufacturing
process, SFC plays an important role in shaping the management problems that must
be faced. A well-designed SFC module will establish a predictable, robust system with
controls whose complexity is appropriate for the system’s needs.

Because manufacturing systems are different, a uniform SFC module for all appli-
cations is impractical, if not impossible. A module that is sufficiently general to handle
a broad range of situations is apt to be cumbersome for simple systems and ill suited for
specific complex systems. More than any other module in the PPC hierarchy, the SFC
module is a candidate for customization. It may make sense to make use of commercial



Chapter 14 Shop Floor Control 483

bar coding, optical scanning. local area networks, statistical process control, and other
technologies as components of an SFC module. However, there is no substitate for care-
ful integration done with the capabilities and needs of the system in mind. Itis our hope
that the manufacturing professicnals reading this book will provide such integration,
using the basics, intuition, and synthesis skills they have acquired here and elsewhere.

Since we do not believe it is possible to provide a cookbook scheme for devising
a suitable SFC module, we have taken the approach of starting with simple systems,
highlighting key issues, and extending our approach to various more compiex issues.
Qur basic scheme is to start with a simple set of CONWIP lines as the incumbent and
ask why such a setup would not work. If it does work, as we belteve it can in relatively
uncomplicated flow shops, then this is the simplest, most robust solution. If not, then
more complex schemes, such as that of pull-from-bottleneck (PFB), may be necessary.
We hope that the variations on CONWIP we have offered are sufficient to spur the reader
to think creatively of options for specific situations beyond those discussed here.

One last issue we have emphasized is that feedback is an essential feature of an
effective production planning and control system. Unfortunately, many PPC systems
evolve in a distributed fashion, with different groups responsible for different facets
of the planning process. The result is that inconsistent data are used, communication
between decision makers breaks down, and factionalism and finger pointing, instead of
cooperation and coordination, become the standard response to probiems. Furthermore,
without a feedback mechanism, overly optimistic data (¢.g., unrealistically high estimates
of capacity) can persist in planning systems, causing them to be untrustworthy at best and
downright humorous at worst, Statistical throughput control is one explicit mechanism
for forcing needed feedback with regard to capacity data. Similar approaches can be
devised to promote feedback on other key data, such as process yields, rework frequency,
and learning curves for new products. The key is for management to be sensitive to the
potential for inconsistency and to strive to make feedback systemic to the PPC hierarchy.
Furthermore, 1o be effective, feedback mechanisms must be used in a spirit of problem
solving, not one of blamc fixing.

Although the SFC module performs some of the most lowly and mundane tasks ina
manufacturing plant, it can play a critical role in the overall effectiveness of the system.
A well-designed SFC module establishes a predictable environment upon which to build
the rest of the planning hierarchy. Appropriate feedback mechanisms can collect useful
data for such planning and can promote an environment of ongoing improvement. To
recall our quote from the beginning of this chapter,

Even a journey of one thousand li begins with a single step.

Lao Tz

The SFC module is not only the first step toward an effective production planning and
control system, it is a very important step indeed.

APPENDIX 14A
STATISTICAL THROUGHPUT CONTROL

The basic quantity needed to address several short-term production tracking questions is the prob-
ability of making the quota by the end of regular time production, given that we know how much
has been produced thus far. Since output from each ling must be recorded in order to maintain a
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constant WIP level in the line, a CONWIP line will have the requisite data on hand to make this
calculation.

To do this, we define the length of regular time production as 8. We assume that production
during this time, denoted by Ng, is normally distributed, with mean g and standard deviation o .
We let N, represent production, in standard units, during {0, t], wheret < R. We model ¥, as con-
tinuous and normally distributed with mean .t/ R and variance a2¢/R. In general, the assumption
that production is normal will often be good for all but small values of . The assumption that
the mean and variance of ¥, are as given here is equivalent to assuming that production during
nonovetlapping intervals is independent. Again, this is probably a good assumption except for
very short intervals.

We are interested primarily in the process N, — §;, where §; is the cumulative scheduled
production up to time r. If we are using a periodic production quota, then S, = Qr/R. The
quantity N, — 5, represents the overage, or amount by which we are ahead of schedule, at time
¢. If this quantity is positive, we are ahead: if negative, we are behind. In an ideal system with
constant preduction rates, this quantity would atways be zero. In a real system, it wilt fluctuate,
becoming positive and/or negative.

From cur assumptions, it follows that N, — Q¢/ R is normally distributed with mean (z: — Q) /R
and variance o2t/ R. Likewise, Nz, is normally distributed, with mean (R 1)/ R and vanance
#3(R — t)/R. Hence, if at time £, N, = n,, where n, — Qt/R = x (we are x units ahead of
schedule), then we will miss the quota by time R only if Np—, < @ — n,. Thus, the probability of
missing the quota by time K given a current overage of x is given by

P(Na < 0 —ny= P(Ng_, <Q-x- Q)

R
= P(Nk_; = 2'(—"%:-2 —x)
=¢[(Q—u)(R—-f)fR—x]
o /(R-D/R

where @ () represents the standard normal distribution,

From a practical implementation standpeint, it is more convenient to precompute the overage
levels that cause the probability of missing the quota to be any specified level a. These can be
computed as follows:

& l:(Q — KR —-');’R—x]
aJTR—BD/R

which yields

(4~ QUR -5 R—1
= - — IO
R R

where z,, is chosen such that @ (z,) = «. This x is the overage at time ¢ that results in a probability
of missing the quota exactly equal to «, and is Equation (14.2), upon which our STC charts are
based.

Study Questions

1. What is the motivation for limiting the span of control of a manager to a specified number of
subordinates or manufacturing processes? What problems might this cause in coordinating
the plant?

2. We have repeatedly mentioned that throughput is an increasing function of WIP. Therefore,
we could conceivably vary the WIP level as a way of matching production o the demand
rate. Why might this be a poor strategy in practice?
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3

4.

10.

. What factors might make kanban inappropriate for controlling material fiow through a job
shop, that is, a system with many, possibly changing, routings with fluctuating volumes?
Why might we want to violate the WIP cap imposed by CONWIP and run a card deficit
when a machine downstreamn from the bottleneck fails? If we allow this, what additional
discipline might we want to impose to prevent WIF explosions?
. What are the advantages ot breaking a long production line into tandem CONWIP loops?
What are the disadvantages?
. For each of the following situations, indicate whether you would be inclined to use
CONWIF (C), kanban (K), PFB (P), or an individual system (1) for shop floor control.
a. A flow line with a single-product family.
b. A paced assembly line fed from inventory storage.
c. A steel mill where casters feed hot strip mills (with slab storage in between), which feed
cold rolling mills (with coil storage in between).
d. A plant with several routings sharing some resources with significant setup times, and all
routings are steadily loaded over time.
e. A plant with many routings sharing some resources but where some routings are
sporadically vsed.

. What is meant by statistical throughput control, and how does it differ from statistical

process control? Could one vse SPC touls (i.e., controf charts) for throughput tracking?

. Why is the STC chart in Figure 14.13 symmetric, while the one in Figure 14.16 is
asymmetric? What does this indicate about the cffect of setting production quotas at or near
average capacity?

. Why might it make sense o use exponential sincothing with a tinear trend to track mean

capacity of a line? How could we judge whether exponentiai smoothing without a lincar

trend might work as well or better?

What uses are there for tracking the standard deviation of periodic output from a production

line?

Problems

1.

A circuit board manufacturing line contains an expose operation consisting of five parallel
machines inside a clean room. Because of limited space, there is only room for five carts of
WIP (buards) to buffer expose against upstream variability. Expose is fed by a coater line,
which consists of a conveyor that loads boards at a rate of three per minute and requires
roughly one hour to traverse (i.e., a job of 60 boards will require 20 minutes to load plus one
hour for the last loaded board to arrive in the clean room at expose). Expose machines take
roughly two hours to process jobs of 60 boards each. Current policy is that whenever the WIP
inside the clean room reaches five jobs {in addition to the five jobs being worked on at the
expose machines), the coater line is shut down for three hours. Both expose and the coater are
subject to variability due to machine failures, materials shortages, operator unavailability, and
so forth. When all this is factored into a capacity analysis, expose seems to be the bottleneck
of the entire line.

a. What problem might the current policy for controlling the coater present?

. What alternative would you suggest? Remember that expose is isolated from the rest of the
line by virtue of being in a clean room and that because of this, the expose operators cannot
see the beginning of the coater; nor can the coater loader easily see what is going on inside
the clean room.

¢. How would your recommendation change if the capacity of expose were increased (say, by
using Roating labor to work through lunches) so that it was no longer the long-term
bottleneck?

_ Consider a five-station line that processes two products, A and B. Station 3 is the bottleneck

for both products. However, product A requires one hour per umnit at the bottleneck, while
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product B requires one-haif hour. A modified CONWIP control policy is used under which

the complexity-adjusted WIP is measured as the number of hours of work at the bottleneck.

Hence, one unit of A counts as» one unit of complexity-adjusted WIP, while one unit of B

counts as one-half unit of complexity-adjusted WIP. The policy is to release the next job in the

sequence whenever the complexity-adjusted WIP level falls to 10 or less,

a. Suppose the release sequence alternates between product A and B (that is, A-B-A-B-A-B-
...). What will happen to the numbers of type A and type B jobs in the system over time?

b. Suppose the release sequence alternates between 10 units of A and 10 units of B. Now
what happens to the numbers of type A and type B jobs in the system over time?

c. The JIT literaturc advocates a sequence like the one in a. Why? Why might some lines
need to make use of a sequence like the one in b?

3. Consider the two-product system illustrated in Figure 14.20. Product A and component 1 of
product B pass through the bottleneck operation. Components 1 and 2 of product B are
assembled at the assembly operation. Type A jobs require one hour of processing at the
battleneck, while type B jobs require one and one-half hours. The lead time for type A jobs to
reach the bottleneck from their release point is two hours. Component 1 of type B jobs takes
four and one-half hours to react the bottleneck. The sequence of the next cight jobs to be
processed at the bottlencek 1s as follows:

Iob index i 2 3 4 5 6 7 8

Joh type A A B B B B A B

Joubs 1 through 6 have already been released but have not yet been completed at the
bottleneck. Suppose that the svstem is controlled using the pull-from-the-bottleneck method
described in Section 14.4.2, where the planned time at the bottleneck is L = 4 hours.

a. When should job 7 be released (i.e., now or afler the completion of that job currently in the
system)?

b. When should job 8 be released (i.e., now or after the completion of that job currently in the
system)? Arc jobs necessarily released in the order they will be processed at the
bottleneck? Why or why not?

¢. If we only check to see whether new jobs should be released when jobs are completed at
the bottlencck, will jubs wajt at the bottleneck more than, less than, or equai to the target
time L7 (Hint: What is the expected waiting time of job 8 at the bottleneck?) Could these
be cases in which we would want to update the current work$oad at the bottleneck more
frequently than at completion times of jobs?

d. Suppose that the lead time for component 2 of product B to reach assembly is one hour. if
we want component 2 to wait for one and one-half hours on average at assembly, when
should it be released relative to its corresponding component 1?

4, Consider a linc that builds toasters runs five days per week, one shift per day (or 40 hours per
week). A periodic quota of 2,500 toasters has been set. If this quota is not met by the end of
work on Friday, overtime on the weekend is run to make up the difference. Historical data
indicate that the capacity of the line is 2,800 toasters per week, with a standard deviation of
300 toasters.
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a. Suppose at hour 20 we have completed 1,000 toasters. Using the STC model, estimate the
probability that the line w1l be able to make the quota by the end of the week.

b How many toasters must be completed by hour 20 to ensure a probability of 0.9 of making
the guota? '

¢. If the weekly quota is increased to 2,800 toasters per week, how does the answer to &
change?

5. Qutput from the assembly line of a farm machinery manufacturer that produces combines has
been as follows for the past 20 weeks:

Week 3 2 3 4 5 6 7 B 9 10
Output 22 21 24 30 25 25 33 40 36 39
Week 11 12 13 14 15 16 17 18 19 20
Output 50 33 44 48 35 47 61 58 55 60

a. Use exponential smoothing with a linear trend and smoothing constants o« = 0.4 and
B = 0.2 o track weekly output for weeks 2 to 20. Does thete appear o be a positive trend
to the data?

b, Using mean square deviation (MSD) as your accuracy measure, can you find values of o
and B that fit these data better than those given ina?

¢. Use exponential smoothing (without a linear trend) and a smoothing constant y = 0.2t0
track variance of weekly output for weeks 2 to 20. Does the variance seem to be
increasing, decreasing, or constant?



C H A P T E R

15 PRODUCTION SCHEDULING

Let all things be done decently and in order.
1 Corinthians

15.1 Goals of Production Scheduling

Virtually all manufacturing managers want on-time delivery, minimal work in process,
short customer lead times, and maximum utilization of resources. Unfortunately, these
goals conflict, It is much easier to finish jobs on time if resource utilization is low.
Customer lead times can be made essentially zero if an enormous inventory is maintained.
And so on. The goal of production scheduling is to strike a profitable balance among
these conflicting objectives.

In this chapter we discuss various approaches to the scheduling problem. We begin
with the standard measures used in scheduling and a review of traditional scheduling
approaches. We then discuss why scheduling problems are so hard to solve and what
implications this has for real-world systems. Next we develop practical scheduling
approaches, first for the bottleneck resource and then for the entire plant. Finally, we
discuss how to interface scheduling—which is push in concept—with a pull environment
such as CONWIP.

15.1.1 Meeting Due Dates

A basic goal of production scheduling s 10 meet due dates. These typically come from
one of two sources: directly from the customer or in the form of material requirements
for other manufacturing processes.

In a make-to-order environment, customer due dates drive all other due dates. As
we saw in Chapter 3, a set of customer requirements can be exploded according to the
associated bills of material to generate the requirements for all lower-level parts and
components.

In a make-to-stock environment there are no customer due dates, since all customer
orders are expected to be filled immediately upon demand. Nevertheless, at some point,
falling inventory triggers a demand on the manufacturing system. Demands generated in
this fashion are just as real as actual customer orders since, if they are not met, customer
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fiemands will eventually go unfilled. These stock replenishment demands are exploded
into demands for lower-level components in the same fashion as customer demands.
Several measures can be used to gauge due date performance, including these:

Service level (also known as simply service), typically used in make-to-order
systems, is the fraction of orders fiiled on or before their due dates. Equivalently, it
is the fraction of jobs whose cycle time is less than or equal to the planned lead
time.

Fill rate is the make-to-stock equivalent of service level and is defined as the
fraction of demands that are met from inventory, that is, without backorder.
Lateness is the difference between the order due date and the completion date. If
we define d; as the due date and ¢; as the completion time of job /., the lateness of
job j is given by L, = ¢; — d,. Notice that lateness can be positive (indicating a
late job) or negative (indicating an early job). Consequently, small average
lateness has little meaning. It could mean that all jobs finished near their due
dates, which is good; or it could mean that for every job that was very late there
was one that was very early, which is bad. For lateness to be a useful measure, we
must consider its variance as well as its mean. A small mean and variance of
lateness indicates that most jobs finish on or near their due dates.

Tardiness is defined as the lateness of a job if it is late and zero otherwise. Thus,
early jobs have zero tardiness. Consequently, average tardiness is a meaningful
measure of customer due date performance.

These measures suggest several objectives that can be used to formulate scheduling
problems. One that has become classic is to “minimize average tardiness.” Of course,
it is classic only in the production scheduling research literature, not in industry. Asone
might expect, “minimize Jateness variance™ has also seen very little use in industry.

Service level and fill rate are used in industry. This is probably because tardiness
is difficult to track and because the measures of average tardiness and lateness variance
are not intuitive. The percentage of on-time jobs is simpler to state than something like
“the average number of days late, with early jobs counting as zero” or “the standard
deviation of the difference between job due date and job completion date.” However,
service level and fill rate have obvious problems. Once a job is late, it counts against
service no marter how late it is. Naive approaches can thus lead to ridiculous schedules
that cali for such things as never finishing late jobs or lying to customers. We present a
due date quoting procedure in Section 15.3.2 that avoids these difficulties.

15.1.2 Maximizing Utilization

In industry, cost accounting encourages high machine utilization. Higher utilization
of capital equipment means higher return on investment, provided of course that the
equipment is utilized to increase revenue (.., to create products that are in demand).
Otherwise, high utilization merely serves to increase inventory, not profits. High utiliza-
tion makes the most sense when producing a commodity item to stock.

Factory physics also promotes high utilization, provided cycle times, quality, and
service are not degraded excessively. However, recall that the Capacity Law implies that
100 percent utilization is impossible, How close to full utilization a line can rn and
still have reasonable WIP and cycle time depends on the level of variability, The more
variability a line has, the lower utilization must be to compensate. Furthermore, as the
practical worst case in Chapter 7 illustrated, balanced lines have more congestion than
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unbalanced ones, especially when variability is high. This implies that it may well be
attractive not to have near 100 percent utilization of /! resources in the line.

A measure that is closely related to utilization is makespan, which is defined as the
time it takes to finish a fixed number of jobs. For this set of jobs, the production rate is
the number of jobs divided by the makespan, and the utilization is the production rate
divided by the capacity. Aithough makespan is not widely used in industry, it has seen
frequent use in the theoretical scheduling research.

The decision of what target to use for utilization is a strategic one that belongs at
the top of the in-plant planning hierarchy (Chapter 13). Because high-level decisions
are made less frequently than low-level ones, utilization cannot be adjusted to facilitate
production scheduling. Similarly, the level of variability in the line 1 a consequence
of high-level decisions (e.g.. capacity and process design decisions) that are also made
much less frequently than are scheduling decisions. Thus, for the purposes of scheduling
we can assurne that utilization targets and variability levels are given. In most cases, the
target utilization of the bottleneck resource will be high. The one important exception
to this is a highly variabte and customized demand process requiring an extremely quick
response time (e.g., ambulances and fire engines). Such systems typically have very low
utilization and are not well suited to scheduling. We will assume throughout, therefore,
that the system is such that a fairly high bottleneck utilization is desirable.

15.1.3 Reducing WIP and Cycle Times

As we discussed in Part II, there are several motives for keeping cycle times short,
including these:

1. Better responsiveness to the customer. If it takes less time to make a product,
the lead time to the cusiomer can be shortened.

2. Maintaining flexibility. Changing the list (backlog) of parts that are planned to
start next is less disruptive than trying to change the set of jobs already in
process. Since shorter cycle times allow for later releases, they enhance this
type of flexibility.

3. Improving quality. Long cycle times typically imply long queues in the system,
which in turn imply long delays between defect creation and defect detection.
For this reason, short ¢ycle times support good quality.

4. Relying less on forecasts. If cycle times are longer than customers are willing to
wait, production must be done in anticipation of demand rather than in response
1o it. Given the lack of accuracy of most demand forecasts, it is extremely
important to keep cycle times shorter than quoted lead times, whenever possible.

3. Making better forecasts. The more cycle imes exceed customer lead times, the
farther out the forecast must extend. Hence, even if cycle times cannot be
reduced 1o the point where dependence on forecasting is eliminated, tycle time
reduction can shorten the forecasting time horizon. This can greatly reduce
forecasting errors.

Little’s Law (CT = WIP/TH) implies that reducing cycle time and reducing WIP are
equivalent, provided that throughput remains constant. Haowever, the Variability Buffer-
ing Law implies that reducing WIP without reducing variability will cause thronghput
1o decrease. Thus variability reduction is generally an important component of WIP and
cycle time reduction programs.

Although WIP and cycle time may be virtually equivalent froin a reduction policy
standpoint, they are not eguivalent from a measurement standpoint. WIP is often easier
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to measure, since one can count jobs, while cycle times require clocking jobs in and
out of the systemn. Cycle times become even harder to measure in assembly operations.
Consider an automobile, for instance. Does the cycle time start with the ordering of the
components such as spark plugs and steel, or when the chassis starts down the assembly
line? In such cases, it is more practical to use Little's Law to obtain an indirect measure
of cycle time by measuring WIP (in dollars) over the system under consideration and
dividing by throughput (in dollars per day).

15.2 Review of Scheduling Research

Scheduling as a practice is as old as manufacturing itself. Scheduling as a research
discipline dates back to the scientific management movement in the early 1900s. But
serious analysis of scheduling problems did not begin until the advent of the computer in
the 19505 and 1960s. In this section, we review key results from the theory of scheduling,

15.2.1 MRP,MRP I, and ERP

As we discussed in Chapter 3, MRP was one of the earliest applications of computers to
scheduling. However, the simplistic model of MRP undermines its effectiveness. The
reasons, which we noted in Chapter 5, are as foliows:

|. MRP assumes that lead times are attributes of parts, independent of the status of
the shop. In essence, MRP assumes infinite capacity.

2. Since MRP uses onty one lead time for offsetting and since late jobs are
typically worse than excess inventory, there is strong incentive to inflate lead
times in the system. This results in earlier releases, larger queues, and hence
longer cycle times.

As we discussed in Part TI, these problems prompted some scheduling researchers
and practitioners to turn to eshancements in the form of MRP 11 and, more recently, ERP.
Others rejected MRP altogether in tavor of JIT. However, the majority of scheduling
researchers focused on mathematical formulations in the field of operations research, as
we discuss next.

15.2.2 Classic Scheduling

We refer to the set of problems in this section as classic scheduling problems because of
their traditional role as targets of study in the operations research literature. For the most
part, these problems are highly simplified and generic, which has limited their direct
applicability to real situations, However, despite the fact that they are not classic from
an applications perspective, they can offer some useful insights.

Most classical scheduling problems address one, two, or possibly three machines,
Other common simplifying assumptions include these:

1. All jobs are available at the start of the problem (i.e., no jobs arrive after
processing begins).

. Process times are deterministic,

_ Process times do not depend on the schedule (i.e., there are 10 setups).

. Machines never break down.

. There is no preemption (i.e., once a job starts processing, it must finish).

= LV R - VL

. There is no cancellation of jobs.
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Thesc assumptions serve 1o reduce the scheduling problem te manageable propor-
tions, in some cases. One reason is that they allow us to restrict attention to simplified
schedules, catled sequences. In general, a schedule gives the anticipated start times of
each job on each resource, while a sequence gives only the order in which the jobs are
to be done. In some cases, such as the single-machine problem with all jobs available
when processing begins, a simple sequence is sufficient. In more complex problems,
separate sequences for ditferent resources may be required. And in some problems a
full-blown schedule is necessary to impart the needed instructions to the system. Not
surprisingly, the more complex the form of the schedule that is sought, the more difficult
iris o find it.

Some of the best-known problems that have been studied in the context of the as-
sumptions discussed in the operations research literature are the following.

Minimizing average cycle time on a single machine. First, note that for the
single-machine problem, the fotal time 1o complete all the jobs does not depend on
the ordering—it is given by the sum of the processing times for the jobs. Hence an
alternate criterion is needed. One candidate is the average cycle time (called flow
time in the production scheduling literature), which can be shown to be minimized
by pracessing jobs in order of their processing times, with the shortest job first and
fongest job last. This is calied the shortest process time (SPT) sequencing rule.
The primary insight from this result is that short jobs move through the shop more
quickly than long jobs and therefore tend to reduce congestion.
Minimizing maximum lateness on a single machine. Another possible criterion
is the maximum lateness that any job is late, which can be shown to be minimized
by ordering the jobs according to their due dates, with the earliest due date first
and the latest due date fast. This is called the earliest due date (EDD) sequencing
rute. The intuition behind this approach is that if it is possible to finish all the jobs
on time, EDD sequencing will do so.
Minimizing average tardiness on a single machine. A third criterion for the
single-machine problem is average tardiness. (Note that this is equivalent to total
tardiness, since average tardiness is simply total tardiness divided by the number
of jobs.) Unfortunately, there is no sequencing rule that is guaranteed to minimize
this measure. Often EDD is a good heurstic, but its performance cannot be
ensured, as we demonstrate in one of the exercises at the end of the chapter.
Likewise, there is no sequencing rule that minimizes the variance of lateness. We
wili discuss the reasons why this scheduling problem and many others like it are
particularly hard to solve.
Minimizing makespan on two machines. When the production process consists
of two machines. the total time to finish all the jobs, the makespan, is no longer
fixed, This is because certain sequences might induce idle time on the second
machine as it waits for the first machine to finish a job. Johnson (1954) proposed
an intuitive algorithm for finding the sequence that minimizes makespan for this
problem, which can be statcd as follows: Separate the jobs into two sets, A and B.
Jobs in set A are those whose process time on the first machine is less than or
equal to the process time on the second machine. Set B contains the remaining
jobs. Jobs in set A go first and in the order of the shortest process time first. Then
jobs in set B are appended in order of the longest process time first. The resultis a
sequence that minimizes the makespan over the two machines.

The insight behind Johnson’s algorithm can be appreciated by noting that we
want a short job in the first position because the second machine is idle until the
first job finishes on the first machine, Similarly, we want a short job to be last
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since the first machine is idle while the second machine is finishing the last job.
Hence, the algorithm implies that small jobs are better for reducing cycle times
and incrcasing wtilization.
Minimizing makespan in job shops. The problem of minimizing the time to
complete n jobs with general routings through #t machines (subject to all the
assumpticns previously discussed} is a well-known hard problem in the cperations
research literature. The ceason for its difficulty is that the number of possible
schedules to consider is enormous, Even for the modestly sized 10-job,
10-machine problem there are almost 4 x 10%% possible schedules (more atoms
than there are in the earth). Because of this a 1{-by-10 problem was not solved
optimally until 1988 by using a mainframe computer and five hour of computing
time {Carlier and Pinson 1988). '

A standard approach to this type of problem is known as branch and bound.
The basic idea is to define a branch by selecting a partial schedule and define
bounds by computing « lower limit on the makespan that can be achieved with a
schedule that includes this partial schedule. If the bound on a branch exceeds the
makespan of the best (complete} schedule found so far, it is no longer considered.
This is a method of implicit enumeration, which allows the algorithm to consider
only a small subset of the possible schedules. Unfortunately, even a very small
fraction of these can be an incredibly large number, and so branch and bound can
be tediously slow. Indeed, as we will discuss, there is a body of theory that
indicates that any exact algotithm for hard problems, like the job shop scheduling
problem, will be slow. This makes nonexact heuristic approaches a virtual
necessity. We will list a few of the many possible approaches in our discussion of
the complexity of scheduling problems.

Scheduling is hard, both theoretically (as we will see) and practically speaking. A tradi-
tional alternative to scheduling all the jobs on all the machines is to simply dispatch—sort
according to a specified order—as they arrive at machines. The simplest dispatching rule
(and also the one that seemns fairest when dealing with customers) is first-in, first-out
(FIFO). The FIFO rule simply processes jobs in the order in which they armve at a ma-
chine. However, simulation studies have shown that this rule tends not to work well in
complex job shops. Alternatives that can work better are the SPT or EDD rules, which
we discussed previously. In fact, these are often used in practice, as we noted in Chapter
3 in our discussion of shop floor control in ERP. Literally hundreds of different dispatch-
ing rules have been proposed by researchers as well as practitioners (see Blackstone, et
al. 1982 for a survey).

All dispatching rules, however, are myopic in nature. By their very definition they
consider only local and current conditions. Since the best choice of what to work on
now at a given machine depends on future jobs as well as other machines, we cannot
expect dispatching rules to work well all the time, and, in fact, they do not. But because
the options for scheduling realistic systems are still very limited, dispatching continues
to find extensive use in industry.

15.2.4 Why Scheduling Is Hard

We have noted several times that scheduling problems are hard. A branch of mathematics
known as computational complexity analysis gives a formal means for evaluating just
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how hard they are. Altheugh the mathematics of computational complexity is beyond
our scope, we give a qualitative treatment of this topic in order to develop an appreciation
of why some scheduling problems cannot be solved optimally. In these cases, we are
forced to go from seeking the best solution 1o finding a good solution.

Problem Classes. Mathematical problems can be divided into the following two classes
according to their complexity:

1. Class P problems are problems that can be solved by algorithms whose
computational time grows as a polynomial function of problem size.

2. NP-hard problems are problems for which there is no known polynomial
algorithm, so that the time to find a solution grows exponentiaily (i.e., much
more rapidly than a polynomial function) in problem size. Although it has not
been definitively proved that there are no clever polynomial algerithms for
solving NP-hard problems, many eminent mathematicians have tried and failed.
At present, the preponderance of evidence indicates that efficient (polynomial)
algorithms cannot be found for these problems.

Roughly speaking, class P problems are easy, while NP-hard problems are hard.
Moreover, some NP-hard problems appear to be harder than others. For some, efficient
algorithms have been shown empirically to produce good approximate solutions. Other
NP-hard problems, including many scheduling problems, are even difficult to solve
approximately with efficient algorithms.

To get a feel for what the technical terms polynemial and exponential mean, con-
sider the single-machine sequencing problem with three jobs. How many ways are there
to sequence three jobs? Any one of the three could be in the first position, which leaves
two candidates for the second position, and only one for the last position. Therefore,
the number of sequences or permutations is 3 x 2 x 1 = 6. We write this as 3! and
say "3 factorial.” [f we were looking for the best sequence with regard to some ob-
jective function for this problem, we would have to consider (explicitly or implicitly)
six alternatives. Since the factorial function exhibits exponential growth, the number of
aliernatives we must search through, and therefore the amount of time required to find
the optimal solution, also grows exponentially in problem size.

The reason this is important is that any polynomial function will eventually become
dominated by any exponential function. For instance, the function 10,00012'9 is a big
polynomial, while the function " /10,000 appears small. Indeed, for small values of n,
the polynomial function dominates the exponential. Butataroundn = 60 the exponential
begins to dominate and by n = 80 has grown 10 be 50 million times larger than the
potynomial function.

Returning to the single-machine probiem with three jobs, we note that 3! does not
seem very large, However, observe how quickly this function blows up: 3= 6,4 =24,
51 = 120, 6! = 720, and so on. As the number of jobs to be sequenced becomes
large, the number of pussible sequences becomes quite ominous: 100 = 3,628,800,
13! = 6,227,020,800, and

251 = 15,511,210,043,330,985,984,000,000

To get an idea of how big this number is, we compare it to the national debt, which at
the time of this writing had not yet reached $5 trillion. Nonetheless, suppose it were $5
trillion and we wanted to pay it in pennies. The 500 trillion pennies would cover almost
one-quarter of the state of Texas. In comparison, 25! pennies would cover the entire



Chapter 15 Production Schedufing 495

TABLE 15.1 Computer Times for

TaBLE 15.2 Computer Times for Job
Job Sequencing on a

Sequencing on 2 Computer

Slow Computer 1,000 Times Faster
Number of Jobs | Computer Time Number of Jobs Computer Time
5 (+.12 millisec 5 0.12 microsec
6 (.72 millisec 6 0.72 microsec
7 5.04 millisec 7 5.04 microsec
8 40.32 millisec 8 4032 microsce
9 0.36 sec 9 362.88 microsec
10 3.63 sec 10 3.63 millisec
11 3892 sec 11 39,92 millisec
12 7.98 min 12 479,00 millisec
13 1.73 hr 13 6.23 sec
14 24.22 hr 14 87.18 sec
15 15.14 days 15 21.79 min
20 71,147 years 20 77.147 years

state of Texas—to a height of over 6,000 miles! Now that’s big. (Perhaps this is why
mathematicians use the exclamation point to indicate the factorial function.)

Now let us relate these big numbers to computation times. Suppose we have a
“glow” computer that can examine 1,000,000 sequences per second and we wish to build
a scheduling system that has a response time of no longer than one minute, Assuming
we must examine every possible sequence to find the optimum, how many jobs can we
sequence optimally? Table 15.1 shows the computation times for various numbers of
jobs and indicates that 11 jobs is the maximum we can sequence in less than one minute.

Now suppose we purchase a computer that runs 1,000 times faster than our old
“slow” one (i.e., it can examine one billion sequences per second). Now how many jobs
can be examined in less than one minute? From Table 15.2 we see that the maximum
problem size we can salve only increases to 13 jobs (or 14 if we allow the maximum
time to increase to one and one-half minutes). A 1,000 fold increase in computer speed
only results in an 18 percent increase in size of the largest problem that can be solved in
the specified time. The basic conclusion is that even big increases in computer speed do
not dramatically increase our power to solve nonpolynomial problems.

For comparison, we now consider problems that do not grow exponentially. These
are called polynomial problems because the time to solve them can be bounded a poly-
nomial function of problem size (for example, n*, n?, etc., where n is a measure of
problem size).

As a specific example, consider the job dispatching problem described in Sec-
tion 15.2.3 and suppose we wish to dispatch jobs according to the SPT rule. This
tequires us to sort the jobs in front of the workstation according to process time.! There
are well-known algorithms for sorting a list of elements whose computation time (i.e.,
number of steps) is proportional to n log n, where n is the number of elements being

| Actually, in practice we would prohably maintain the queue 1n sorted order, so we would not have 10
resort it each time a job arrived. This would make the problem even simpler than we indicate here.
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TasLE 153 Computer Times for TaBLE 15.4 Ceomputer Times for Job

Job Sorting on the Sorting on a Computer
Slow Computer 1,000 Times Faster
Number of Jobs | Computer Time Number of Jobs Computer Time
10 3.6 sec 1,000 1.1 sec
11 4.1 sec 2,000 2.4 sec
12 4.7 sec 3,000 3.8 sec
20 9 4 sec 10,000 14.5 sec
30 16.1 sec 20,000 31.2 sec
: 30,000 48.7 sec
80 55.2 scc 35,000 57.7 sec
85 59.5 sec 36,000 59.5 sec
90 63.8 sec E ':
: : 50,000 85.3 sec
100 72.6 sec 100,000 181.4 sec
200 167.0 sec 200,000 384.7 sec

sorted. This function is clearly bounded by n?, a polynomial. Therefore, dispatching
has polynomial complexity.

Suppose, just for the sake of comparison, that on the slow computer of the previous
example it takes the same amount of time to sort 10 jobs as it does to examine 1
sequences (that is, 3.6 seconds). Table 15.3 reveals how the sorting times grow for lists
of jobs longer than 10, Notice that we can sort 85 jobs and still remain below one minute
(as compared to 11 jobs for the sequencing problem).

Even more interesting is what happens when we purchase the computer that works
1,000 times faster. Table 15.4 shows the computation times and reveals that we can go
from sorting 85 jobs on the slow computer to sorting around 36,000 on the fast one. This
represents an increase of over 400 percent, as compared to the 18 percent increase we
observed for the sequencing problem. Evidently, we gain a lot from a faster computer
for the “‘easy” (polynomial) sorting problem, but not much for the “hard” {exponential)
sequencing problem.

Implications for Real Problems. Because most real-world scheduling problems fall
into the NP-hard category and tend to be large (e.g., involving hundreds of jobs and
tens of machines), the above results have important consequences for manufacturing
practice. Quite literally, they mean that it is impossible to solve many reatistically sized
scheduling problems optimally.”

Fortunately, the practical consequences are not quite so severe. Just because we
cannot find the best solution does not mean that we cannot find a good one. In some ways,
the nonpolynomial nature of the problem may even help, since it implies that there may

2 A compulter with as many bits as there are protons in the universe, running at the speed of light, for the
age of the universe, would net have cnough time to solve some of these problems. Therefore the waord
impaossible is not an exaggeration.



Chapter 15 Production Scheduling 497

be many candidates for a good solution. Reconsider the 25-job sequencing problem. If
“good” solutions were extremely rare to the point that only one in a trillion of the possible
solutions was good, there would still be more than 13 trillion good solutions. We can
apply an approximate algorithm, called a heuristic, that has polynomial performance
to search for one of these solutions. There are many types of heuristics, including such
interestingly named techniques as beam search, tabu search, simulated annealing, and
genetic algorithms. We will describe one of these (tabu search) in greater detail when
we discuss bottleneck scheduling.

15.2.5 Good News and Bad News

We can draw a number of insights from this review of scheduling research that are useful
10 the design of a practical scheduling system.

The Bad News. We begin with the negatives. First, unfortunately, most real-world pro-
blems violate the assumptions made in the classic scheduling theory literature in at least
the following ways:

1. There are always more than two machines. Thus Johnson’s minimizing
makespan algorithm and its many variants are not directly useful.

2 Process times are not deterministic. In Part IT we learned that randomness and
variability contribute greatly to the congestion found in manufacturing systems.
By ignoring this, scheduling theory may have overlooked something
fundamental.

3. All jobs are not ready at the beginning of the problem. New jobs do arrive and
continue arriving during the entire life of the plant. To pretend that this does not
happen or to assume that we “clear out” the plant before starting new work is to
deny a fundamental aspect of plant behavior.

4. Process times are frequently sequence-dependent. Often the number of setups
performed depends on the sequence of the jobs. Jobs of like or similar parts can
usually share a setup while dissimilar jobs cannot. This can be an important
concern when scheduling the bottleneck process.

Second, real-world production scheduling problems are hard (in the NP-hard sense),
which means

1. We cannot hope to find optimal solutions of many realistic-size scheduling
problems.

2. Nonpolynomial approaches, like dispatching, may not work well.

The Good News.  Fortunately, there are also positives, especially when we realize that
much of the scheduling research suffers from type III error: solving the wrong problem.
The formalized scheduling problems addressed in the operations research literature are
models, not reality. The constraints assumed in these models are not necessarily fixed
in the real world since, to some extent, we can control the problem by controlling the
environment. This is precisely what the Japanese did when they made a hard scheduling
problem much easier by reducing setup times. When we think along these lines, the
failures as well as the successes of the scheduling research literature can lead us to
useful insights, including the following.
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Due dates: We do have some contro} over due dates; after all, someone in the
company sets or negotiates them, We do not have to take them as given, although
this is exactly what some companies and most scheduling problem formulations
do. Section 15.3.2 presents a procedure for quoting due dates that are both
achievable and competitive.

Job splitting: The SPT results for a single machine suggest that smali jobs clear
out more quickly than large jobs, Similarly, the mechanics of Johnson’s algorithm
call for a sequence that has a small job at both the beginning and the end. Thus, it
appears that small jobs will generally improve performance with regard to average
cycle time and machine utilization. However, in Part 1 we also saw that small
batches result in lost capacity due to an increased number of setups. Thus, if we
can somehow have large process batches (i.e., many units processed between
setups) and small move batches (i.¢., the number accumulated before moving to
the next process), we can have both short cycle times and high throughput. This
concept of lot splitting, which was illustrated in Chapter 9, thus serves to make the
system less sensitive to scheduling errors.

Feasible schedules: An optimal schedule is really only meaningful in a
mathematical model. In practice what we need is a good, feasible one. This makes
the scheduling problem much easier because there are so many more candidates
for a good schedule than for an optima! schedule. Indeed, as current research is
beginning to show. various heuristic procedures can be quite effective in
generating reasonable schedules.

Focus on botilenecks: Because bottleneck resources can dominate the behavior
of a manufacturing system, it is typically most critical to schedule these resources
well. Scheduling the bottleneck(s} separately and then propagating the schedule to
nonbottieneck resources can break up a complex large-scale scheduling problem
into simpler pieces. Moreover, by focusing on the bottleneck we can apply some
of the insights from the single-machine scheduling literature,

Capacity: As with due dates, we have some control over capacity. We can use
some capacity controls {e.g., overtime) on the same time frame as that used to
schedule production. Others (e.g., equipment or workforce changes) require
longer time horizons. Depending on how overtime is used, it cun simplify the
scheduling procedure by providing more options for resolving infeasibilities.
Also, if longer-term capacity decisions are made with an eye toward their
scheduling implications, these, t0o, can make scheduling easier. Chapter 16
discusses aggregate planning tools that can help facilitate this.

With these insights in mind, we now examine some basic scheduling scenarios in

greater detail. The methods we offer are not meant as ready-to-use solutions—the range
of scheduling environments is too broad to permit such a thing—but rather as building
blocks for constructing reasonable solutions to real problems.

15.2.6 Practical Finite-Capacity Scheduling

In this section we discuss some representative scheduling approaches, called variously
advanced planning systems and finite-capacity scheduling, available in commercial
software systems. Since the problems they address are large and NP-hard, all these
make use of heuristics and hence none produces an optimal schedule (regardless of what
the marketing materials might suggest). Moreover, these scheduling applications are
generaily additions to the MRP (material requirements planning) moduie within the ERP
(enterprise resources planning) framework. As such, they attempt to take the planned



Chupter 15 Production Scheduling 499

order releases of MRP and schedule them through the shop so as to meet due dates, reduce
the number of setups. increase utilization, decrease WIP, and so on. Unfortunately, if
the planned order releases generated by MRP represent an infeasibie plan, no amount
of rescheduling can make it feasible. This is 2 major shortcoming of such “bolt-on”
applications.

Finite-capacity scheduling systems typically fall into two categories: simulation-
based and optimization-based. However, many of the optimization-based methods also
make use of simulation.

Simulation-Based Scheduling. One way to avoid the NP-hard optimization problem
is 10 simply ignore it. This can be done by developing a detailed and deterministic (i.e.,
no unpredictable variation in process times, no unscheduled outages, etc.) simulation
model of the entire system. The model is then interfaced to the WIP tracking system of
ERP to allow downloading of the current status of active jobs. Demand information is
obtained from either the master production schedule module of ERF or another source.
To generate a schedule, the model is run forward in time and records the arrival and
departure of jobs at each station. Different schedules are generated by applying various
dispatching rules at each station. These are evaluated according to selected performance
measures to find the “best” schedule.

An advantage of the simulation approach is that it is easier to explain than most
optimization-based methods. Since a simulator mimics the behavior of the actual system
in an intuitive way, planners and operators alike can understand its logic. Another
advantage is that it can quickly generate a variety of different schedules by simply
changing dispatching rules and then reporting stauistics such as machine utilization and
the number of tardy jobs to the user. The user can choose from these the schedule that best
fits his or her needs. For example, a custom job shop might be more intcrested in on-time
delivery than in utilization, whereas a production system that uses extremely expensive
equipment to make a commodity would be more interested in keeping utilization high.

However, there are also disadvantages. First, simulation requires an enormous
amount of data that must be constantly maintained. Second, because the model does
not account for variability, there can be large discrepancies between predicted and ac-
tual behavior. However, since virtually all finite-capacity scheduling procedures ignore
variability, this problem is not limited to the simulation approach. The consequence is
that to prevent error from piling up and completely invalidating the schedule over time
it is important to regenerate the schedule frequently.

A third problem is that because there is no general understanding of when a given
dispatching rule works well, finding an effective schedule is a trial-and-exrror process.
Also, because dispatching rutes are inherently myopic, it may be that no dispatching rule
generates a good schedule.

Finally, the simulation approach, like the optimization approach, is generally used
as an add-on to MRP. In a simulation-based scheduler, MRP release times are used to
define the work that will be input into the model. However, if the MRP release schedule
is inherently infeasible, simple dispatching cannot make it feasible. Something else—
either capacity or demand—must change. But simulation-based scheduling methods are
not well suited to suggesting ways to make an infeasible schedule feasible. For this an
entirely different procedure is needed, as we discuss in Section 13.5.

Optimization-Based Scheduling,  Unlike classical optimization, optimization-based
scheduling techniques use heuristic procedures for which there are few guarantees of per-
formance. The difference between optimization-based and simulation-based scheduling
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techniques is that the former uses some sort of aigorithm to actively search for a good
schedule.We will provide a short overview of these techniques and refer the reader in-
terested in more details 10 a book devoted to the subject by Morton and Pentico {1993).

There are a variety of ways to simplify a complex scheduling problem to facilitate
a tractable heuristic. One approach is to use a simulation model, like the simulation-
based methods discussed. and have the system search for parameters {e.g., dispatching
rules) that maximize a specified objective function, However, since it only searches
over a partial set of policies {e.g.. those represented by dispatching rules), it is not a true
optimization approach.

An approach that makes truer use of optimization is to reduce a line or shop schedul-
ing problem: 1o a single-machine scheduling problem by focusing on the bottleneck. We
refer to heuristics that do this as “OPT-like” methods, since the package called “Op-
timized Production Technique” developed in the early 1980s by Eliyahu Goldratt and
others was the first to popularize this approach. Although OPT was sold as a “black
box™ without specific details on the solution approach, it involved four basic stages:

1. Determine the bottleneck for the shop.

2. Propagate the due date requirements from the end of the line back to the
bottleneck using a fixed lead time with a time buffer.

3. Schedule the bottleneck most effectively.

4. Propagate material requirements from the bottleneck backward to the front of
the Yine using  fixed lead time to determine a release schedule.

Simons and Simpson (1997) described this procedure in greater detail, extending it to
cases in which there are multiple bottlenecks and when parts visit a bottleneck more
than once. Because they use an objective function that weights due date performance
and utilization, OPT-like methods can be used to generate different types of schedules
by adjusting the weights.

Anentirely different optimization-based heuristic is beam search, which is a deriva-
tive of the branch-and-bound technigue mentioned earlier. However, instead of checking
each branch generated, beam search checks only relatively few branches that are selected
according 1o some sort of “intelligent” criteria. Consequently, it runs much faster than
branch-and-bound but cannot guarantee an optimal solution.

An entire class of optimization-based heuristics are those classed as local search
techniques, which start with a given schedule and then search in the “neighborhood” of
this schedule to find a better cne. It turns out that “greedy” technigues, which always
select the best nearby schedule, do not work well. This is because there are many
schedules that are not very good overall but are best in a very small local neighborhood.
A simple greedy method will usvally end up with one of these and then quit,

Several methods have been proposed 1o avoid this problem. One of these is called
tabu search because it makes the most recent schedules “taboo” for consideration,
thereby preventing the search from getting stuck with a locally good but globally poor
schedule. Consequently, the search will move away from a locally good schedule and,
for awhile, may even get worse while searching for a better schedule. Another method
for preventing local optima is use of genetic algorithms that consider the characteristics
of several “parent” schedules to generate new ones and then allow only good “offspring”
to survive and “reproduce” new schedules. Still another is simulated annealing, which
selects candidate schedules in a manner that loosely mimics the gradual cooling of ametal
to minimize stress. In simulated annealing, wildly random changes to the schedule can
take place early in the process, where some improve the schedule and others make it
worse. However, as time goes on, the schedule becomes less volatile {i.e., is “cooled™)
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and the approach becomes more and more greedy. Of course, all local search methods
“remember’” the best schedule that has been found at any point, in case no better schedule
can be found. We will contrast one of these techniques (tabu search) with the greedy
method in Section 15.4 on bottleneck sequencing.

Optimization-based heuristics can be applied in many different ways to a variety
of scheduling problems. Within a factory, the most common problem formulations are
(1} minimizing some measure of tardiness, (2) maximizing resource utilization, and (3)
some combination of these. We have seen that tardiness problems are extremely difficult
even for one machine. Utilization (e.g., makespan) problems are a little easier. But they
also become intractable when there are more than two machines. So developing effective
heuristics is not simple. Pinedo and Chao (1999) give details on which methods work
well in various settings and how they can be implemented effectively.

One problem with optimization-based scheduling is that many practical scheduling
problems are not really optimization problems at all but, rather, are better characterized
as satisficing problems. Most scheduling professionals would not consider a schedule
that has several late jobs as optimal. This is because some constraints, such as due
dates and capacity, are not fard constraints but are more of a “wish list.” Although the
scheduler would rather not add capacity, it could be done if required to meet a set of
demands. Likewise, it might be possible to split jobs or postpone due dates if required
1o obtain a feasible schedule. It is better to have a schedule that is implementable than
one that optimizes an abstract objective function but cannot possibly be accomplished.

As with simulation-based scheduling, optimization-based scheduling has found use-
ful implementation despite its drawbacks. A number of firms have been successful in
combining such software (some developed in-house) with MRP II systems to assist
planners. Arguello (1994) provides an excellent survey of finite-capacity scheduling
software (both optimization-hased and simulation-based) used in the semiconductor in-
dustry. Since most of this software has also been applied in other industries, the survey
is relevant to non-semiconductor practitioners as well.

15.3 Linking Planning and Scheduling

Within an enterprise resources planning system, the MRP module generates planned
order releases based on fixed lead times and other simplifying assumptions. As has
been discussed before, this often results in an infeasible schedule. Also, because finite-
capacity scheduling is far from a mature technology, many of the advanced planning
systems found in modern ERP systems are complex and cumbersome. The time required
to generate a capacity-feasihie schedule makes it impractical o do so with any kind of
regularity.

These problems have led to the practice of treating material planning (e.g., MRP),
capacity planning (e.g., capacity requirements planning (CRP)), and production exe-
cution (e.g., order release and dispatching) separately in terms of time, software, and
personnel. For example, material requirements planning determines what materials are
needed and provides a rudimentary schedule without considering capacity. Then the
capacity planning function performs a check to see if the needed capacity exists. If
not, either the user (e.g., by iterating CRP) or the system (e.g., by using some advanced
planning systems) attempts to reschedule the releases. But because capacity was not
considered when material requirements were set, the capacity planning problem may
have been made unnecessarily difficult (indeed, impossible). The problem is further
aggravated by the common practice of having one department (e.g., production control)
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generate the production plan (both materials and capacity) which is then handed off to a
different department (manufacturing) to execute.

An important antidote to the planning/execution disconnect is cycle time reduction.
If cycle times are short (e.g., the result of variability reduction and/or use of some sort of
pull system), the short-term production planning function (i.e., committing to dermands)
can provide the production schedule.” However, before that can be done, the production
planning and scheduling problem must be recast from one of optimization, subject to
given constraints of capacity and demand, to one of feasibility analysis, to determine
what must be done in order (0 have a practical production ptan. This requires a procedure
that analyzes both material and capacity requirements simultaneously. This can be done
in theory with a large mathematical programming model. However, such formulations
are usually slow and therefore prohibit making frequent feasibility checks as the situation
evolves. We present a practical heuristic method that provides a quick feasibilty check
in Section 15.5.2.

The remainder of this chapter focuses on issues central to the development of prac-
tical scheduling procedures. In the rernainder of this section we consider techniques
for making scheduling problems easier, namely, effective batching and due date quot- -
ing. Section 15.4 deals with bottleneck scheduling in the context of CONWIP lines.
For mare general situations, we provide a method that considers material and capacity
simultaneously in Section 15.5. Finally, in Section 15.6 we show how to use scheduling
(which is inherently *push” in nature} within a pull environment.

15.3.1 Optimal Batching

In Chapter 9 we observed that process batch sizes can have a tremendous impact on cycle
time. Hence, batching can also have a major influence on scheduling. By choosing batch
sizes wisely, (o keep cycle times short. we can make it easier for a schedule to meet due
dates. We now develop methods for determining batch sizes that minimize cycle time.

Optimal Serial Batches. Figure 15.1 shows the relation between average cycle time
and the serial batch size. With the formulas developed in Chapter 9, we could plot the
total cycle time and find an optimal batch size for a single part at a station. However, this
would be cumbersome and is of little value when we have multiple parts that interact with
one another. So instead we derive a simple procedure that first finds the (approximately)
optimal utilization of the station and then uses this to compute the serial batch size. We
do this first for the case of a single part and then extend the approach to multiprodact
systems.

Technical Note: Optimal Serial Process Batch Sizes
We first consider the case in which the product families are identical with respect to process
and setup times and arrivals are Poisson. The problem is to find the serial batch size that
minimizes total cycle time at a single staton. This batch size should be good for the line if
only one station has significant setups and tends 1o be the bottleneck.

Using the notation from Chapter 9, the effective process time for a batch is 1, = 5 + k¢,
and utilization 1s given by

= s+ k)
H—ES i

3Long-lerm production planning, also known as aggregate planning, is used to set capacity levels, plan
for workforce changes, ete. (sce Chapter 16).
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Now define the “utilization without setups™ as uy = r,f. A little algebra shows that the
effective process time of a batch can be written
su

f,= -~ -
W — g
Since we are assuming Poisson arrivals {a good assumption if products arrive from a variety
of sources), the arrival squared coefficient of variation (SCV} is ¢2 = 1 and average cycle

time is
1 2
CT:( +c,)( u su + su (15.1)
2 1 —u/fu—un W — Hp

Written in this way, cycle time is a function of u only, instead of k and ». So minimizing
eycle time boils down to tinding the optimal station utilization. We do this by taking the
derivative of (15.1) with respect to u, setting it equal to zero, and solving, which yields,

gt o + atug + [o(] + ug) + ug
afl +ug) + 1

(15.2)

where o = (1 4 ¢2)/2 ~ 1. Note that in the special case where ¢? = 1 we have thata = 0
and

Wt = Jug (15.3)

But even when c? 1s not equal to one, the value of u* generally remains close to ./up. For
example, when ug = 0.5 and ¢ = 15, the difference is less than five percent. Moreover, the
closer ig is to one {i.e., the higher the utilization of the system without setups), the smailer
the difference between u* and ./ug for atl ¢ (see Spearman and Kréckel 1999).

To obtain the batch size, recali that

u*:l—i(s+k‘r)=%;+uo

and solve for k*.

The above analysis shows that a good approximation of the serial baich size that

minimizes cycle time at a station is

ras Fa¥f
k* = = 154
u* — up Jlg — g ¢ )

where ug = r,z. We illustrate this with the following example,
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Example: Optimal Serial Batching (Single Product)
Consider the serial batching example in Section 9.4 and shown in Figure 15.1. The

utilization without considering setups uy is
up = r,t = (0.4 part/hour}{1 hour) = 0.4
So, by Equation (15.3), optimal utilization is approximately
u* = g = V0.4 = 0.6325
and by Equation (15.4} the optimal batch size is

raS$ 0.4(3)
ut—ug 0632504 86~9

From Figure 15.1, we sce that this is indeed very close to the true optimum of eight. The
difference in cycle time is less than one percent.

The insight that the optimal station utilization is very near to the square root of the
utilization without setups is extremely robust. This allows it to be used as the basis for
a serial batch-setting procedure in more general muitiple-product family systems. We
develop such an approach in the next technical note.

K=

Technical Note—Qptimal Serial Batches with Multiple Products
To model the multiproduct casc we define the following:

n = number of products
index for products, i =1, ..., n

r.. = demand rate for product { (parts per hout)
{; = mean time to process one part of product { (hours)
= SCV of time tv process one part of product i
5 = mean time to perform setup when changing to product i {(hours)
¢l = SCV of time to perform setup when changing to product ¢
1, = effective process rime averaged over all products (hours)

e? = SCV of effective process time averaged over all products
#y = 3, Faf, = station utilization without setups

u = station utilization

k, = lot size for product i

We can use the VT equation to compute cycle time at the station as

1 —u

CT = (—XE— + 1) A (15.5}

where V = (1 + ¢2)/2. To usc this, we must compute u, ¢, and ¢, from the individual part
data. Utilization is given by

n

P
= = ¢ + k.'fj
u ; % (s )
The effective process time is, in a sense, the “mean of the means.” In other words, if the
mean process time for a batch of i is 5; + k;r; and the probability that the batch is for product

i is mr,, then the effective process time is

t = Zn,— (5, + kit;) (15.6)
i=l
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The probability that the batch is of a given product type is the ratio of that type’s arrival rate
to the total arrival rate

= Fa /K, (15.7
' ):J_:=|(dﬂrkf) »
Using standard stochastic analysis, we compute the variance of the effective run time o7 as
ol =) mitkeltl +cish + [Z mis + ki)Y - r}] (15.8)
=1 =]

and hence the effective SCV is ¢ = g2/1%.

Now, assuming as we did in the single-product case that u* = ,/iq is a good approximation
of the optimal utilization, the lot-sizing problem reduces to finding a set of ; values that
achieve u* and keep cf and ¢, small. From Equation (15.5) it is clear that this will lead to a
small cycle time. Note that if all the values of 5; -+ k;1,, that is, all the average run lengths,
were equal, the term in square brackets in Equation (15.8) would be zero. Thus, one way
to keep both 7, and ¢? small is to minimize the average run length and to make all the run
lengths the same. We can express this as the following optimization problem.

Minimize L
Subject to: s+kt<L fori=1,...,n
Z :ci (si +hty=u*

=l F

The solution can be obtained from
8 + k,f.' =1L
L- '
k = —;i (15.9)

Then solve for L., using the constraint
" F,
Z f (i + k) = u’

=t

If the setup times are all close to the mean setup Bme, which we denote by §, then we can
solve for L as follows.

p o L fast (15.10)

N = Wy

Substituting this inte Equation {15.9) yields approximately optimal batch sizes.

The above analysis shows that the serial batch size for product i that minimizes
cycle time at a station with multiple products and setups is
L — Sf

K== (15.11)

where L is computed from Equation (15.10).
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Example: Optimal Serial Batching (Multiple Products)

Consider an industrial process in which a blender blends three different products. De-
mang for each product is 15 blends per month and is controlled by an MRP system that
uses a constant batch size for each product. Whenever the blender is switched from one
product to another, a cleanup is reguired. Products A and B take four hours per blend
and eight hours for cleanup. Product C requires eight hours per blend and 12 hours for
cleanup. All process and setup times have a coefficient of variation of one-half. The
blender is run two shifts per day, five days per week. With one hour lost for each shift
and 52/12 weeks per month, this averages out to 303.33 hours per month,

In keeping with conventional wisdomn {e.g., the EOQ model} that longer changeovers
should have larger batch sizes, the firm is currently using batch sizes of 20 blends for
products A and B and 30 blends for product C. The average cycle time through the
process is currently around 32 shop days. But could they do better?

Converting demand to vnits of hours yields r,; = 15/303.33 = 0.0495 blend per
hour for all three products. The utilization without setups is therefore

uo = 0.0495(4 + 4 + 8) =0.7912

Hence, the optimal utilization is u* = /g = +/0.7912 = 0.8895.
The average setup time is § = (8 + 8 + 12)/3 = 9.33 hours, so the sum needed in
Equation (15.10} is

3
Z rais b = 0.0495[8(4) + B(4) + 12(8)] = 7.912
i=1
and hence
_ 7.912
~ 0.8895 — 0.7912
With this we can compute the approximately optimal batch sizes as follows.

L—5s4, 8982-8

L +9.33 = 89.82

ky =kp = ; = a = 20.46 = 20
A
L - §9.82 — 12
ke = 22 = =973~ 10
te 8

Using these batch sizes results in an average cycle time of 20.28 days, a decrease of
over 36 percent. Doing a complete search over all possible batch sizes shows that this is
indeed the optimal solution.

Note that the batch size for part C is smaller than that for A and B. EOQ logic,
which was developed assuming separable products, suggests that C should have a larger
batch size because it has a longer setup time. But to keep the run lengths equal across
products, we need to reduce the batch size of C,

Optimal Parallel Batches. A machine with parallel batching is a true batch machine,
such as a heat treat oven in a machine shop or a copper plater in a circuit-board plant.
In these cases, the process time is the same regardless of how many parts are processed
at once {the batch size).

In parallel batching situations, the basic tradeoff is between effective capacity uti-
lization, for which we want targe batches, and minimal wait-to-batch time, for which we
want small batches. If the machine is a bottleneck, it is often best to use the largest batch
pussible (size of the batch operation). In nonbottlenecks, it can be best (in terms of cycle
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time) to process a partial batch. The following technical note describes a proceduse for
determining the optimal parallel batch size at a single station.

Technical Note—Optimat Parallel Batches

To find a batch si1ze that minimizes cycle time at a paralle] batch operation, it is convenient to
find the best utilization and then translate this to a batch size, as we did in the case of serial
process batching.

To do this, we make use of the following notation:

r, = arrival raie (parts per hour)
¢, = coefficient of variation (CV) of interarrival times
t = time to process a batch (hours)

¢, = effective C'V for processing time of a batch
B = maximum batch size (number of parts that can fit info process)
U = rof = utilization resulting from batch size of one

station utilization

It

k = parallel batch size

Note that utilization is given by u = r,/(k/t), which muost be less than one for the station to
be stable. We can use 4, = r,! torewrite this as u = itm / k, which implies the baich size is
k= iutmju.

Recall, from Chapter 9, that the total time spent ip a parallet batch operation includes
wait-to-batch tme (WTBT), queue time. and the time of the operation itself, which can be
wrtten

CT = WTBT + CT, +1

k=1 (c§;k+c_§) u ):+:
= o, 2 1—u

k—1 clik+cl u )
2ku : ( 2 ) L —u + ( )

where the last equality follows from the fact that r, = uk/r.
Substitution of £ = ., /u allows us to rewnte Equation (15.12) as

— 2 2
oF = b Y l+cdu;’um+ﬁ LTI (15.13)
24 2 l—w

Unformnately, minimizing CT with respect to utifization does not yield a simple expression.
So to approximate, we will let g = c2u/u, and assume that this term can be treated as a
constant. Our justification for this is that when & is large, ufuy, wilt be small, which will
make 8 negligible. This reduces the expression for cycle time to

1 1 B4+t )
CT|—— B B
(Zu 2um+ 2 1—u

viw) 1
= == - — +1 15.14
(2 5t )r (15.14)
where
1 2
) = 4 BECH
u I —u

Minimizing Equation (15.14) is cquivalent to minimizing y{u) with respect to u, which is
fairly easy. Taking the derivative of y(#) with respect 10 #, setting it equal to zero, and solving
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yields
. §

o= T-ﬁ-_‘/ﬁ {15.15)
If, as we suggested it might be, 8 is close to zero, then the optimal utitization reduces to
i
1 +e,
When c? is not too small, dropping the 8 = c2u/u,, term does not have a large impact and
equation (15.16) is a fairly good approximation. However, when ¢7 is small, dropping this
term significantly changes the problem. Indeed, when c? = 0, equation (15.16) suggests that
the optimal uvtilization is equal to one! Of course, we know that this is not reasonable, since
if there is any variability in the arrival process, the queue will blow up.
So, to go back and reintroduce the 8 term, we substitute the approximate expression for
u* from equation (15.16) into 2 /u... so that

.
-4

(15.16)

P

P = e

1
and = e S e 15.17
1+ /2 flumit ¥ el + 2 (117
Once we bave the optimal vtilization «*, we can easily find the optimal batch size &* from
k=upju

Thus, we have that the process batch size that minimizes cycle time at a paraliel

batch station is

k= ‘;—’f (15.18)
where u,, = ratf and u* is computed using Equation (15.17). To obtain an integer
batch size, we will use the convention of rounding up the value from Equation (15.18).
This will tend to offset some of the error introduced by the approximations made in the
technical note.

In addition to a computational tool, Equations {15.17) and (15.16} yield some qual-
itative insight. They indicate that the more variability we have at the station, the less
utilization it can handle. Specifically, as ¢, or ¢, increases, the optimal utilization of
the system decreases. This is a consequence of the factory physics results on variability
and utilization, which showed that these two factors combine to degrade performance.
Hence, when we are optimizing performance, we must offset more variability via less
utilization,

We illustrate the use of the formula for parallel batch sizing in the following example.

Example: Optimal Parailel Batching
Reconsider the burn-in operation discussed in Section 9.4, in which a facility tests medi-
cal diagnostic units in an operation that turns the units on and runs them in a lemperature-
controlled room for 24 hours regardless of how many units are being bumed in. The
burn-in room can hold 100 units at a time, and units arrive to burn in at a rate of one per
hour (24 per day). Figure 9.6 plots cycle time versus batch size for this example and
shows that cycle time is minimized at a batch size of 32, which achieves a cycle time of
42.88 hours.

Now consider the situation using the above optimal batch-sizing formulas. The
arrival rate is , = 1 per hour and arrivals are Poisson, so ¢, = 1. The process time is
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¢t = 24 hours, and it has variability such that ¢, = 0.25. So for stability we require a
batch size k > u,, = r,t = 24, which implies that the minimum batch size is 25.
However, if we use a batch size of 25, we get

EECR Sy
TR T s
k=1 25-1
WTBT = _oT
2, 5 12 hours

(:3;’k+62 u
er, = (457) ()

1/25 +0.25% 0.96
= 4 = 29,
( > )(I-—O.%)z Q.52 hours

Hence, the average cycle time through the heat treat operation will be
CT = WTBT + CT, + ¢ = 12 4+ 29.52 + 24 = 65.52 hours

Now consider the other extreme and let £ = 100, the size of the burn-in room.

T, 1
= - = =024
“ k/ 100/24 0.2
k=1 100 -1
Te= — = =495h
WTB 2 0 49.5 hours

ik +c? u
CT‘*“( 3 )(1—u)‘

1/100 + 0.25% 0.24
— 24 =0.27h
( 2 )(1_0‘24) 0.27 hour

So the average cycle time through the heat treat operation will be
CT = WTBT + CT, +¢ = 49.5 4+ 0.27 + 24 = 73.77 hours

Now to find the optimal batch size, we first compute the optimal utilization.
. i
U+ S lum(LF e+ 62
_ 1
T 1+ J/1/[28(1 + 0.25)) + 0.257

Then we use Equatien (15.18) to compute

(T 24
u*  0.7636
Note that this is exactly the optimal batch size we observed in Figure 9.6. Furthermeore,
the minimum batch size yields a cycle time that is 53 percent higher than the optimuim,
while the maximum batch size yields one that is 72 percent greater than optimal. Clearly,
batching can have a significant impact on cycle times in parallel batch operations.

k= = 31.43 = 32
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15.3.2 Due Date Quoting

Variability reduction (Chapter 9), pull production (Chapter 10), and efficient lot-sizing
methods (previously described) all make 4 production system easier to schedule. Another
technique for simplifying scheduling is due date quoting. Since scheduling problems that
involve due dates are extremely hard, while the due date—setting problem can be relatively
easy, this would seem worthwhile. Of course, in the real world, implementation is more
than a matter of mathematics. Developing a due date—quoting system may involve a
much mere difficult problem—getting manufacturing and salespeople to talk to one
another.

In addition to personnel issues, the difficulty of the due date—quoting problem de-
pends on the manufacturing environment. To be able to specify reasonable due dates,
we must be able to predict when jobs will be completed given a specified schedule of
releases. If the environment is so complex that this is difficult, then due date quoting
will also be difficult. However, if we simplify the environment in a way that makes it
more predictable, then due date quoting can be made straightforward.

Quoting Due Dates for a CONWIP Line. One of the most predictable manufactur-
ing systems is the CONWIP line. As we noted previously, CONWIP behavior can be
characterized via the conveyor model. This enables us to develop a simple procedure
for quoting due dates.

Consider a CONWIP line that maintains w standard units* of WIP and whose output
in each period (e.g., shift, day) is steady with mean u and variance o?. Suppose a
customer places an order that represents ¢ standard units of work, and we are free to
specify a due date. To balance responsiveness with dependability, we want to quote the
carliest due date that ensures a service level (probability of on-time delivery) of 5. Of
course, the due date that wil} achieve this depends on how much work is ahead of the
new order. This in turn depends on how customer orders are sequenced. One possibility
is that jobs are processed in first-come, first-serve order, in which case we let b represent
the current backlog (i.e., number of standard jobs that have been accepted but not yet
released to the line). Alternatively, “emergency slots” for high-priority jobs could be
maintained (see Figure 15.2) by quoting due dates for some lower-prionity jobs as if there
were “placeholder” jobs already ahead of them. In this case, we define b to represent
the units of work until the first emergency slot.

In either case, the customer order will be filled after m = w + b + ¢ standard units
of work are output by the line. Hence the problem of finding the carliest due date that
guarantees a service level of s is equivalent to finding the time within which we are
s percent certain of being able to complete m standard units of work. We derive an
expression for this time in the following technical note.

4 & standard unit of WIP is one that requires a certain amount of time at the bottleneck of the line. Thus,
CONWIP maintains a constant workload in the line, as measured by time on the bortleneck.
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Technical Note—Due Date Quoting for a CONWIP Line

Let X, be a random variable representing the amount of work (in standard units) completed
in period ¢. Assuime that X,,¢ = 1,2, ..., are independent and normally distributed with
mean . and variance o2, To guarantee completion by time £ with probability s, the following
must be true:

]
PIZX,gml =1-35
t=1

Note that since the means and variances of independent random variables are additive, the
amount of work completed by time £ is given by

4
Z X, ~ N(¢u, €0
=1

That is, it is normally distributed with mean €4 and variance £a2. Hence,
- ¢
P{Z <227 } =1-s
Vi

where Z is the standard (-] normal randorn variable.
Therefore,

m—Ey .
N i
where z,_, is obtained from a standard normal table.
We cap rewrite Equation {15.19) as

2 - Qum 4 2o+ m’ =0 (15.20)

(15.19}

which can be solved by using the quadratic equation. There are two roots o this equation;
as long as s > 0.5, the larger one should always be used. This yields Equation (15.21).

The minimum quoted lead time for a new job consisting of ¢ standard units that is
sequenced behind a backlog of b standard units in a CONWIP line with a WIP level of
w necessary to guarantee a service level of s is given by

o [1 + Jaum)(2_ o) + 1]
=" 4 i | (15.21)
2 2p

wherem = w+b+c.

A possible criticism of the above method is that it is premised on service. Hence, a
job that is one day late is considered just as bad as one that is one year late. A measure
that better tracks performance from a customer perspective is tardiness. Fortunately,
it turns out that quoting each job with the same service level also yields the minimum
expected quoted lead time subject to a constraint on average tardiness (see Spearman
and Zhang 1999).

Furthermore, to simplify implementation with little loss in performance, Equation
(15.21) can be replaced by

£= = + planned inventory time (15.22)
n

where planned inventory time can be adjusted by trial and error to achieve acceptable
service (see Hopp and Roof 1998).
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Example: Due Date Quoting
Suppose we have a CONWIP line that maintains 320 standard units of WIP and has an
average output of 80 units per day with a standard deviation of 15 units. The line receives
a high-priority order representing 20 standard units, and the first available emergency
slot on the backlog is 100 jobs from the start of the line. We want to quote a due date
with a service level of 99 percent.

To use Equation (15.21), we observe that u = 80, a? = 225 (or, 15%), w = 320,
b = 100, and ¢ = 20, so that m = 440. The value for z1_; = zo.n = —2.33 is found in
a standard normal table. Thus,

m zo? [l + Jdum/(Z2o?)y + l]

e=+ 2
arp  (—233%)(225) [1 + /4(80)(440)/[(—2.33)2(225)] + 1]
=80 2(802) '
= 6.62

and so we quote seven days to the customer.

Notice that the mean time to complete the order is m/u = 440/80 = 5.5 days. The
additional one and one-half days represent safety lead time used as a buffer against the
variability in the production process.

Figure 15.3 shows the lead time quotes as a function of total backlog m. The dashed
line shows the mean completion time m /., which is what would be quoted if there were
no variance in the production rate. The difference between the solid and dotted lines is
the safety lead time, which we note increases in the backlog level. The reason is that
the more work that must be completed to fill an order, the greater the variability in the
completion time, and hence the higher the required safety lead time.

In an environment with multiple CONWIP routings, a similar set of computations
would be performed for each routing in the plant. The only data needed are the first two
moments of the production rate for the routing, the current WIP level (a constant under
CONWIP), and the current status of the backlog. These data should be maintained in a
central location accessible to both sales and manufacturing. Sales needs the information
to quote due dates; manufacturing needs it to determine what to start next. Manufacturing
cap also track production against a backlog established by sales (e.g., the statistical
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throughput control procedure described in Chapter 14} The overall result will be due
dates that are competitive. achievable, and consistent with manufacturing parameters.

15.4 Bottleneck Scheduling

A main conclusion of the scheduling research literature is that scheduling problems,
particularly realistically sized ones, are very difficult. 8o it is common to simplify the
problem by breaking it down into smaller pieces. One way to do this is by scheduling the
bottleneck process by itself and then propagating that schedule to nonbottleneck stations.
This is particularly effective in simple flow lines. However, bottleneck scheduling can
also be an important compenent in more complex scheduling situations as well.

A major reason why restricting attention to the bhottieneck can simplify the schedul-
ing problem is that it reduces a multimachine problem (o a single-machine problem.
Recall from our discussion of scheduling research that simple sequences, as opposed to
detailed schedules, are often sufficient for single-machine problems. Since a schedule
presents information about when each job is to be run on each machine while 4 sequence
only presents the order of processing the jobs, it is easier to compute a sequence. Fur-
thermore, because schedules become increasingly inaccurate with time, seguences can
be more tobust in practice.

The scheduling probicm can be further simplified if the manufacturing environment
is made up of CONWIP lines. As we know (Chapter 13}, a CONWIP line can be
characterized as a conveyor with rate r/ (the practical production rate) and transit time
TO‘D (minimum practical lead time). Since the parameters r{f and TUP are adjusted to
include variability effects such as failures, variable process times, and setups, and because
safety capacity (overtime) is used to ensure that the line achieves its target rate each period
(day, week, or whatever), the deterministic conveyor model is a good approximation of
the stochastic production system. Thus, by focusing on the bottleneck in a CONWIP
line, we effectively reduce « very hard muitistation stochastic scheduling problem to a
much easier single-station deterministic scheduling problem. Also, since we use first-in-
system first-out (FISFO) dispatching at each station, itis a trivial matter 1o propagate the
bottleneck sequence to the other stations—simply use the same sequence at all stations.
This sequence is the CONWIP backlog to which we have referred in previous chapters.
In this section, we discuss how to generate this backlog.

15.4.1 CONWIP Lines Without Setups

We begin by considering the simplest case of CONWIP lines—those in which setups
do not play u role in scheduling. This could be because there are no significant setups
between any part changes. Alternatively, it could be because setups are done periodically
(e.g., for cleaning or maintenance) but do not depend on the work sequence. Sequencing
a single CONWIP line without setups is just like scheduling the single machine with due
dates that we discussed earlier and hence can be done with the earliest due date (EDD)
rule. Results from scheduling theory show that the EDD sequence will finish all the jobs
on time if it is possible to do so. Of course, what this really means is that jobs will finish
on time in the planned schedule. We cannot know in advance if this will oceur, since
it depends on random events. But starting with a feasible plan gives us a much better
chance at good performance in practice than does starting with an infeasible plan,

A slightty more complex situation is one in which two or more CONWIP lines share
one or more workstations. Figure 15.4 shows such a situation in which {1} two CONWIP
lines sharc a machine that also happens to be the bottleneck and (2) the lines produce
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Figure 15.4
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components for an assembly operation. We consider this case because it starkly illustrates
the issues involved. However, the scheduling is fundamentally the same as scheduling a
system with the lines feeding separate finished goods inventory (FGI) buffers instead of
assembly.

1n both cases, we should sequence releases into the individual lines according to the
EDD rule and use this sequence at all nonshared stations, just as we did for the separate
CONWIP line case. This leaves the question of what sequence to use at the shared
stations,

One might intuitively think that using first-in-first-out (FIFO) would work well.
However, if there is variability in the process times, then, for example, eventually a
string of A jobs will artive at the shared resource before the matching B jobs. Using
FIFQ will therefore only create a queue of unmatched parts at the assembly operation.
In extreme cases, this could actually cause the bottleneck to starve for work since so
much WIP is tied up at assembly.

A better alternative is first-in-system-first-out {FISFO) dispatching at the shared
resource. Under this rule, jobs are sequenced according to when they entered the system
{i.e., the times their CONWII* cards authorized their release). Since the CONWIP cards
authorize releases for matching parts (i.e., one A and one B) at assembly at the same
time, this rule serves to sequence the shared machine according to the assembly sequence.
Hence it serves to synchronize arrivals to assembly as closely as possible. Of course,
when there are no B jobs to work on at the shared machine (due to an unusually long
process time upstream, perhaps) it will process only A jobs. But as soon as it receives
B jobs to work on, it will

1542 Single CONWIP Lines with Setups

The situation becomes more difficult when we consider a CONWIP line with setups at
the bottieneck. Indeed, even determining whether a sequence exists that will satisfy all
the due dates is to answer an NP-complete question.

To illustrate the difficulty of this problem and to suggest a solution approach, we
consider the set of 16 jobs shown in Table 15.5. Each job takes one hour to complete, not
including a setup. Setups take four hours and occur if we go from any job family to any
other. The jobs in Table 15.5 arc arranged in earliest due date order. As we see, EDD
does not appear very effective here, since it results in 10 setups and 12 tardy jobs for an
average tardiness of 10.4. To find a better solution, we clearly do not want to evaluate
every possibility, since there are 16! = 2 x 10'3 possible sequences. Instead we seek a
heuristic that gives a good solution.
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TaeLE 15.5 EDD Sequence

Job Due | Completion
Number Family Date Time | Lateness
| 1 5 0
2 1 [
3 1 10 E 7 -3
4 2 13 12 -1
5 1 15 17 2
3 2 15 | 22 7
7 { 23 27 5
8 2 22 32 10
9 1 23 37 14
10 3 29 42 13
11 2 30 47 17
12 2 3 48 17
13 3 32 53 21
14 3 32 54 22
15 3 33 35 22
16 3 40 56 16

One possible approach is known as a greedy algorithm. Each step of a greedy
algorithm considers all simple alternatives (i.e., pairwise interchanges of jobs in the
sequence) and selects the one that improves the schedule the most. This is why it is
called greedy. The number of possible interchanges (120 in this case) is much smaller
than the total number of sequences, and hence this algorithm will find a solution quickly.
The question of course ts, How good will the solution be? We consider this below.

Checking the total tardiness for every possible exchange betwcen two jobs in the
sequence reveals that the biggest decrease is achieved by putting job 4 after job 3. As
shown in Table 15.6, this eliminates two setups (going from family 1 to family 2 and
back again), The average tardiness is now 5.0 with eight setups.

We repeat the procedure in the second step of the algorithm. This time, the biggest
reduction in total tardiness results from moving job 7 after job 8. Again, this eliminates
two setups by grouping like families together. The average tardiness falls to 1.2 with six
setups. The third step moves job 10 after job 12, which eliminates one setup and reduces
the average tardiness to one-half. The resulting sequence is shown in Table 15.7.

At this point, no further single exchanges can reduce total tardiness. Thus the greedy
algorithm terminates with a sequence that produces three tardy jobs. The question now
is, Could we have done better?

The answer, as shown in Table 15.8, which gives a feasible sequence, is yes. But
must we evaluate all 16! possible sequences to find it? Mathematically speaking, we
must. However, practically speaking, we can often find a better (even feasible) sequence
by using a slightly more clever approach than the simple greedy algorithm,

To develop such a procedure, we observe that the problem with greedy algorithms
is that they can quickly converge to a local optimum-—a solution that is better than any
other adjacent solutions, but not as good as a nonadjacent solution. Since the greedy
algorithm considered only adjacent moves (pairwise interchanges), it is vulnerable to
getting stuck at a Jocal optimum. This is particularly likely because NP-hard problems
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TABLE 15.6 Sequence after First Swap in Greedy Algorithm

Job Due Completion
Number Family Date Time Lateness
1 1 5 5 0
2 I 6 & 0
3 1 10 7 -3
5 t 15 8 -7
4 2 13 13 0
6 2 15 14 -1
7 1 22 9 -3
g 2 22 24 2
9 1 23 20 6
10 3 29 34 5
11 2 30 i 9
12 2 31 40 9
13 3 32 45 13
14 3 32 46 14
15 3 33 47 14
16 3 40 48 B

TanLE 15.7 Final Configuration Produced by Greedy Algorithm

Job Due Completion
Number Family Date Time Lateness
1 1 5 3 0
2 1 6 6 0]
3 1 10 7 -3
5 1 15 8 -7
4 2 13 13 0
6 2 15 14 —1
8 2 22 15 -7
7 1 22 20 -2
9 1 23 21 -2
11 2 30 26 —4
12 2 31 27 —4
10 3 29 32 3
13 3 32 33 1
14 3 32 34 2
15 3 33 35 2
16 3 40 36 —4

like this one tend to have many local optima. What we need, therefore, is a mechanism
that will force the algorithm away from a local optimum in order to see if there are better
sequences farther away.
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TaBLE 15.8 A Feasible Sequence

Job Due Completion
Number Family Date Time Lateness
t 1 5 5 (]
2 1 6 4] 0
3 1 10 7 -3
5 1 15 g -7
4 2 13 13 0
6 2 15 14 —1
8 2 2 15 -7
11 2 30 16 -14
12 2 i 17 —14
7 1 22 22 0
9 1 2 23 o
I 3 29 28 —1
13 3 32 29 3
14 3 iz 30 -2
15 3 33 31 -2
16 3 40 32 —8

One way to do this is to prohibit (make “taboo™) certain recently considered moves.
This approach is called tabu search (see Glover 1990), and the list of recent (and now
forbidden) moves is called a tabu list, In practice, there are many ways to characterize
moves. One obvious {albeit inefficient) choice is the entire sequence. In this case,
certain sequences would become tabu once they were evaluated. But because there are
s0 many sequences, the tabu list would need to be very long to be effective. Another,
more effictent but less precise, option is the location of the job in the sequence. Thus, the
move placing job 4 after job 5 {as we did in our first move) would become tabu once it
was considered the first time. But because we need only prohibit this move temporarily
in order to prevent the algorithm from settling into a local minimum, the length of the
tabu list is limited. Once a tabu move has been on the list long enough, it is discarded
and can then be considered again.

The tabu search can be further refined by not considering moves that we know
cannot make things better. For example, in the above problem we know that making the
sequence anything but EDD within a family (i.e., between setups) will only make things
worse. For example, we would never consider moving job 2 after job 1 since these are
of the same family and job | has a due date that is earlier than that for job 2. This type
of consideration can limit the number of moves that must be considered and therefore
can speed the algorithm.

Although tabu search is simple in principle, its implementation can become compli-
cated (see Woodruff and Spearman 1992 for a more detailed discussion). Also, there are
many other heuristic approaches that can be applied to sequencing and scheduling prob-
lems. Researchers are continuing to evolve new methods and evaluate which work best
for given problems. For more discussion on heuristic scheduling methods, see Morton
and Pentico (1994) and Pinedo (1993).
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15.4.3 Bottleneck Scheduling Results

An important conclusion of this section is that scheduling need not be as hopeless as a
narrow interpretation of the complexity results from scheduling theory might suggest. By
simplifying the environment (¢.g., with CONWIF lines} and using well-chosen heuristics,
managers can achieve reasonably effective scheduling procedures.

In pull systems, such as CONWIP lines, simple sequences are sufficient, since the
timing of releases is controlled by progress of the system. If there are no setups, an
EDD sequence is an appropriate choice for a single CONWIP line. 1t is also suitable for
systems of CONWIP lines with shared resources, as long as there are no significant setups
and the FISFQ dispaiching rule is used at the shared resources, If there are significant
setups, then a simple sequence is still sufficient for CONWIP lines, but not an EDD one.
However, practical heuristics, such as tabu search, can be used to find good solutions for
this case.

15.5 Diagnostic Scheduling

Unfortunately, not all scheduling situations are amenable to simple bottleneck sequenc-
ing. Tn some systems, the identity of the bottleneck shifts, due to changes in the product
mix—when different products have different process times on the machines—-or capaci-
ties change frequently, perhaps as a result of a fluctuating labor force. In some factories,
exiremely complicated rowtings do not allow use of CONWIP or any other pull system.
In still athers, WIP in the system is reassigned to different customers in response to a
constantly changing demand profile.

A glib suggestion for dealing with these situations is to get rid of them, In some
systems where this is possible, it may be the most sensible course of action. However, in
others it may actually be infeasible physically or economically. In such cases, most firms
turn to some variant of MRP. In concept, MRP can be applied to almost any manufacturing
environment. However, as we noted in Chapters 3 and 3, the basic MRP maodel is flawed
because of its underlying assumptions, particularly that of infinite capacity. In response,
production researchers and software vendors have devoted increasing attention to finite-
capacity schedulers. As stated earlier, this approach is often too little, too late since it
relies on the MRP release schedule as input. The goal of this section is to maintain the
structure of the ERP hierarchy while removing the defect in the MRP scheduting model.

In the real world, effective scheduling is more than a matter of finding good solutions
to mathematical problems. Two important considerations are the following:

1. Models depend on data, which must be estimated. A common parameter reguired
by many scheduling models is a tardiness cost, which is used to make a tradeoff between
customer service and inventory costs. However, almost no one we have encountered in
industry is comfortable with specifying such a cost in advance of seeing its effect on the
schedule,

2. Many intangibles are not addressed by models. Special customer considerations,
changing shop floor conditions, evolving relationships with suppliers and subcontractors,
and so forth make completely automatic scheduling all but impossible. Consequently,
most scheduling professionals with whom we have spoken feel that an effective schedul-
ing system must allow for human intervention, To make effective use of human intelli-
gence, such a systemn should evaluate the feasibility (not optimality) of a given schedule
and, if it is infeasible, suggest changes. Suggestions might include adding capacity via
overtime, temporary workers, or subcontracting; pushing out due dates of certain jobs,
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and splitting large jobs. Human judgment is required to choose wisely among these
options, in order to address such questions as, Which customers will tolerate a iate or
partial shipment? Which parts can be subcontracted now? Which groups of workers can
and cannot be asked to work overtime?

Neither uptimization-based nor simulation-based upproaches are well suited to eval-
vating candidate schedules and offering improvement alternatives. Perhaps because of
this, a survey of scheduling software found no systems with more than trivial diagnostic
capability (Arguello 1994).

In contrast, the ERP paradigm is intended to develop and evaluaie production sched-
ules. The master production schedule (MPS) provides the demand; material requirements
planning (MRP) nets demand, determines material requirements, and offsets them to
provide a release schedule; and capacity requirements planning checks the schedule for
feasibility, As a planning framework, this is ideally suited to real-world production
control. However, as we discussed earlier, the basic model in MRP is too simple to
accurately represent what happens in the plant. Similarly CRP is an inaccurate check on
MRP because it suffers from the same modeling flaw (fixed lead times) as MRP. Even if
CRP were an accurate check on schedule feasibility, it does not offer useful diagnostics
on now to cotrect infeasibilities,

Thus, our goal is to provide a scheduling process that preserves the appropriate ERP
framework but eliminates the medeling flaws of MRP. In this section, we discuss how
and why infeasibilities arise and then offer a procedure for detecting them and suggesting
corrective measures.

15.5.1 Types of Schedule Infeasibility

There are two basic types of schedule infeasibility. WIP infeasibility is caused by
inappropriate positicning of WIP. If there is insufficient WIP in the system to facilitate
fulfillment of near term due dates, then the schedule will be infeasible regardless of the
capacity. The only way (o remedy a WIP infeasibility is to postpone {(push out) demand.
Capacity infeasibility is caused by having insufficient capacity. Capacity infeasibilities
can be remedied by either pushing out demand or adding capacity.

Example:
We illustrate the types and effects of schedule infeasibility by considering a line with
a demonstrated capacity of r; = 100 units per day and a practical minimum process
time of T = 3 days. Thus, by Little’s Law, the average WIP level will be 300 units.
Currently, there are 95 jobs that are expected to finish at the end of day 1; 90 that should
finish by the end of day 2: and 115 that have just started. Of these last 115 jobs, 100
will finish at the end of day 3. The remaining 15 will finish on day 4 due to the capacity
constraint. The demands, which start out low but increase to above capacity, are given
in Table 15.9.

First observe that tota! demand for the first three days is 280 jobs, while there are
300 units of WIP and capacity (each job is one unit). Demand for the next 12 days is
1,190 units, while there is capacity to produce 1,200 over this interval plus 20 units of
current WIP lefi over after filling demand for the first three days. Thus, from a quick
aggregate perspective, meeting demand appears feasible.

However, when we Jook more closely, a problem becomes apparent. At the end of
the first day the line will output 95 units to meeta demand of 90 units, which leaves five
units of finished goods inventory (FGI). After the second day 90 additional units will be
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TABLE 15.9 Demand for

Diagnostics
Example

Day from Amount
Start Due
1 90
2 100
3 90
4 80
5 70
6 130
7 120
8 110
9 110
10 110
11 100
12 o0
13 90
14 0
15 90

output, but demand for that day is 100. Even after the five units of FGI left over from
day ! are used, this results in a deficit of five units. At the end of the third day 100 units
are output 1o meet demand of 90 units, resulting in an ¢xeess of 10 units. This can cover
the deficit from day 2, but only if we are willing to be a day late on delivery.

The reason for the deficit in day 2 is that there is not enough WIP in the system
within two days of completion to cover demand during the first two days. While total
demand for days 1 and 2 is 90 4 100 = §90 units, there are only 95 + 90 = 185 units
of WIP that can be output by the end of day 2. Hence, a five-unit deficit will occur no
matter how much capacity the line has. This is an example of a WIP infeasibility. Note
that because it does not involve capacity, MRP can detect this type of infeasibility.

Looking at the demands beyond day 3, we see that there are other problems as
well. Figure 15.5 shows the maximum cumulative production for the line relative to the
cumulative dernand for the line. Whenever maximum cumulative production falls below
cumulative demand, the scheduie is infeasible. The surplus line, whose scale is on the
right, is the difference between the maximum cumulative production and the cumulative
demand. Negative values indicate infeasibility. This curve first becomes negative in
day 2—the infeasibility caused by insufficient WIP in the line. After that, the line can
produce more than demand, and the surplus curve becomes positive. It becomes negative
again on day 8 when demund begins to exceed capacity and stays negative until day 14
when the line finally caiches back up.

The infeasibility in day § is different from that in day 2 because it is a function of
capacity. While no amount of extra capacity could enable the line to meet demand in day
2, production of an additional 23 units of cutput sometime before day 8 would allow it to
meet demand on that day. Hence the infeasibility that occurred on day 8 is an example of
a capacity infeasibility, Because MRP and CRP are based on an infinite-capacity model,
they cannot detect this type of infeasibility.
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The two different types of infeasibilities require different remedies. Since adding
capacity will not help a WIP infeasibility, the only solution is to push out due dates. For
example, if five units of the 100 units due in day 2 could be pushed out to day 3, that
portion of the schedule would become feasible.

Capacity infeasibilities can be remedied in two ways: by adding capacity or by
pushing out due dates. For instance, if overtime were used on day 8 to produce 25 units
of output, the schedule would be feasible. However, this will also increase the surplus
by the end of the planning horizon (see Figure 15.6). Alternately, if 30 units of the 130
units demanded on day 6 are moved to days 12, 13, and t4 (10 each), the schedule also
becomes feasible (see Figure 15.7). This results in a smaller surplus at the end of the
planning horizon than occurs under the overtime alternative, since no capacity is added.
Of course, in an actual scheduling situation we would have to correct these surpluses;
the approach of the next section gives a procedure for doing this.



522

FiGuUre 15.7

Demand versus availuble
production and WIP after
pushing out demand

Part Ilf  Principles in Practice

o 1600 120
5 y

g 1400 - 100
-1}

E 1,200 g0
g 1000 | 60
=

® 800 40
B

g o | 20
a 4004 0

=

E 200 ~20
&

HL

012 3 435 67 8910]112131415_40
Day

~o— Cumulative demand ~ —=— Cumulative production = SurplusJ

15.5.2 Capacitated Material Requirements Planning—MRP-C

A procedure designed to detect and remedy scheduling infeasibilities is capacitated
material requirements planning ( MRP-C) (see Tardif 1995 for details). MRP-C is
simitar to MRP except that it explicitly considers capacity. As such, it replaces MRP in
the MRP I planning hierarchy.

The basic structure of MRP-C derives from the hierarchical nature of production
planning. As we saw in Chapter 13, decision variables in high-level problems are often
constraints in lower-level problems. For example, aggregate planning may treat capacity
variables (e.g., overtime) as variables. Demand management may treat customer due
dates as variables (if due date quoting is used). But scheduling frequently treats both
capacities and due dates as constraints. As we have seen, these constraints result in
some of the hardest problems in the production research literature (e.g., the minimum
makespan job shop problem).

To make the scheduling problem tractable, MRP-C begins by seeking a low-level
schedule that satisfies all due dates without violating capacity and builds as little inventory
as possible before it is needed. We define build-ahead as inventory that is made earlier
than the actual demand. The objective of MRP-C is to find 2 minimam build-ahead
feasible schedule. If it cannot find such a schedule, then MRP-C highlights the causes of
the infeasibility, enabling the planner to make changes in due dates, capacitics, or both
as appropriate to the specific sitwation.

The algorithm used in MRP-C is based on the conveyor model to characterize the
behavior of each process (machine, line segment, or line, depending on the level of detail
required) in the system. This requires estimates of the following two parameters:

1. Minimum practical lead time is denoted by 7" and represents the time to go
through the line with no queueing. This should include any common delays
such as waiting to move and minor adjustments and so will usually be larger
than the raw process time T used in Chapter 7.

2. Practical production rate is denoted by r;] (r) and represents the realistic
capacity of the line in time period ¢. If rf (#) is constant for all 1, then because
utilization of the bottleneck must be less than 100 percent, r{ (#) must be
smaller than the bottleneck rate 7, used in Chapter 7. However, if rf {t) vanes
(e.g., due to scheduled overtime), then r_,f (r) may exceed ry for some £,
However, on average it must be smaller than the long-run bottleneck rate.



Chapter 15 Production Scheduling 523

By using only two values, MRP-C captures the basic relationships between WIP and
cycle time for an eutire process without the burden of a full-blown simulation or detailed
capacity knowledge of each station.

MRP-C consists of two phases. The first compares near-term demands against W1P
already in the line and available capacity to see if there are any infeasibilities. Once
all infeasibilities have been addressed, the second phase works backward in time o
determine the minimum releases into the line required to meet demand. We describe the
mechanics of phase 1 of MRP-C ip the following technical note.

Technical Note—MRP-C (Phase 1)

The procedures divides time into perieds, which could represent shifts, days, or wecks,
depending on the leve! of resolution desired, and makes use of the following notation:

T = planning horizon (last period) of problem
¢ = time index for periods, # = 0, I...., T (anything occurring in period 0 is
before current period)
7;f = minimum practical lead time of process under consideration
£ = lead time to obtain raw material
rf (1) = production rate (capacity) of process in period 7
D(t) = demand due at time 1, that is, the master production schedule
a(t) = scheduled receipts (arrivals) of raw material in period ¢
wif) = “timed-available” WIP (TAWIF) in line that is ¢t periods away from completion,
defined for r =0, 1, ..., Tp. Note that w(0) represents WIP already
completed, which could be finished goods inventory or raw material for another
process, while w(r) represents WIP that is ¢ periods from completion.
W(f) = capacity-adjusted timed-available WIP (CATAWIP) that takes into
consideration the amount of capacity availablc in period ¢
cit) = carryover WIP atr
{(t) = projected-on-hand FGI at time ¢
N{t) = net FGI requirements for period f

The first phase computes the net WIP requirements V{r) as follows:

1. Determine TAWIP, which can be in the form of existing WIP in the line or scheduled
receipts. We do this by setting

existing WIP  forl << T
wity = {alt-TH for ) <t <Tf +¢
oo fort > TS +¢

For periods within the practical minimum process time, w(r) is equal to the existing WIP in
the line. In the previous example where TS = 3 days, w(l} has been in the line for two
days and so is one day away from completion, w{(2} has been in for one day and therefore
requires two more days for compietion, and so on. For values of t beyand 7 but less than
the time to obtain raw material, the timed-available WIP is equal to the arrivals of raw
materia} received T, periods before, For periods that are farther out than the raw material
lead time (£} plus the process time (T]), the value is set to infinity since these materials can
be ordered within their lead time.

2. Compute CATAWIP. We do this by starting with ¢(0) = 0 and computing

wir) = min {rf (1), wir) 4 c{t = 1)
clty = w) +cft — 1) — &)
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fort = 1,2, ..., T. This step accounts for the fact that no more than rf units of WIP
available in period r can actually be completed in period ¢, due to constrained capacity. So
the 1w{r) values represent how much production can be done in each period running at full
capacity. If more WIP is available than capacity in period ¢, then it is carried over as ¢(f)
and becomes available in period 1 + 1.

3. Compute projected on-hand FGIL. We do this by starting with 7 (0) equal to the initial
finished goods inventory and computing

I =T -1+ @@ — D)

fort = 1,2, ..., T. Using the maximum available capacity/raw materials, this step
computes the ending net FGI in each period. If this value ever becomes negative, then it
means that there is not sufficient WIP and/or capacity to meet demand.

4. Compute the net requirements, We do this by computing
N{¢&) = max {0, min [—7(2), D{)]}

fort = 1,2,....T. If I () is greater than zero, there are no net requirements because there
is sufficient inventory o cover the gross requirements. If 7 (1) is negative but I{¢r — 1} > G,
then the net requirement is equal to the absolute value of 7(7). If 7{£) and f{r — 1) are both
negative, then N (7) will be equal to demand for the period. Note that this is exactly
analogous to the netting calculation in regular MRP.

If N(t) > Oand c{t) < N(t), then the schedule is WIP-infeasible and the only remedy is
to move out N(2) — c{r) units of demand. If N¥{r) > 0 and ¢(r) > N (1), then the problem is
a capacity infeasibility, which can be remedied either by moving out demand or by adding
capacity.

5. After any change is made (e.g., moving out a due date), all values must be
recomputed.

The MRP-C procedure detailed above appears complex, butis actually very straight-
forward to implement in a spreadsheet. The following example gives an illustration.

Example:
Applying the MRP-C procedure to the data of the previous example generates the results
shown in Table 15.10. The WIP infeasibility of five units in period 2 is indicated by the
fact that N (2) = 5. The only way to address this problem is to reduce demand in period
% from 100 10 95 and then to move it into period 3 by increasing demand from 90 to 95.
The fact that N (1) reaches 25 for ¢ = 10, 11 indicates a shortage of 25 units of capacity.
One way to address this problem is to add enough overtime to produce 25 more units
in period 8 (which Wwe do in Table 15.11). Otherwise, if no extra capacity is available,
we could have postponed the production of 25 units to later in the schedule by pushing
back due dates. The projected on-hand figure indicates periods with additional capacity
and/or WIP that could accept extra demand, The final schedule is shown in Table 15.11.
At this point, we know that a feasible schedule exists. However, the master pro-
duction schedule generated is not a good schedule since it has periods of demand that
exceed capacity. Thus, some build-ahead of inventory must be done. The second phase
of MRP-C uses the constraints of capacity and WIP provided by the first phase to com-
pute a schedule that is feasible and produces a minimum of buiid-ahead inventory. This
is done by computing the schedule from the last period and working backward in time.
The procedure is given in the following technical note.
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TABLE 15,10 Feasibility Calculations

Projected Net
Period | Demand | TAWIP | Capacity | CATAWIP | Carryover | on Hand ;| Requirements
t D) wit) eFin) w{t} c(t) I N
0 0 0
1 90 95 100 95 U] 5 0
2 100 90 100 20 0 -5 5
3 90 113 100 100 15 5 0
4 80 oo 100 100 o0 25 0
5 10 [o'e] 160 160 oo 55 0
6 130 foe) 100 100 oo 25 0
7 120 00 100 100 o] 5 0
8 110 00 100 100 o0 -5 5
9 110 0o 100 100 oo —15 15
10 110 [o'e’ 100 100 o0 -5 25
11 100 o0 100 100 o0 —25 25
12 50 oo 100 100 oo —15 15
13 29 o0 100 100 oo -3 5
14 50 o0 100 100 oo 5 0
15 90 o0 100 100 oo 15 0
e
TaBLE 15.11 Final Feasible Master Production Schedule
Projected Net
Period | Demand | TAWIP | Capacity | CATAWIP | Carryover | onHand | Requirements
¢ D) w(t) () W) e(r) I N(t)
0 0 0
1 90 95 100 95 0 5 0
2 95 90 100 90 0 0 0
3 29 L5 100 100 15 10 0
4 85 o 100 100 o 25 0
5 10 o0 100 100 o0 55 0
6 130 00 100 100 fore) 25 0
7 120 oo 100 100 [e'e) 5 0
8 110 [o'e) 125 125 [ole] 20 0
g 110 0 100 100 0 10 0
10 110 o0 100 100 0o 0 0
11 100 o0 100 100 oo 0 0
12 90 0o 100 100 o0 10 0
13 S0 oo 100 100 ) 20 0
14 %0 00 100 100 oo 30 1]
15 - 90 oo 100 100 o0 40 0
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Technical Note—MRP-C (Phase II)
To describe the MRP-C procedure for converting a schedule of (feasible) demands to a
schedule of releases (starts), we make use of the following notation:

D{t) = demand due at time ¢, that is, master production schedule
1(t) = projected on-hand FG1 at time ¢
N(t) = net FGI requirements for period ¢
w{;) = CATAWIP available in period ¢
X (r) = production quantity in period ¢
¥{¢) = amount of build-ahead inventory in period ¢, which represents praduction in
period ¢ intended to filt demand in periods beyond ¢
$(¢) = release quantities (“starts”} in period ¢
The basic procedure is tu fust compute net demand by subtracting finished goods inventory
in much the same way as MRP. Then available production in each period is given by the
capacity-adjusted timed-available WIP (CATAWIP). Since this includes WIP in the line, we
do not net it out as we would do in MRP. With this, the procedure computes production,
build-ahead, and starts for each period.
The specific steps are as follows:
1. Netting. We first compute net requirements in the standard (MRP) way.
a. Initialize variables:

(0 = initial finished goods inventory
Ny =0

b. For each period, beginning with period 1 and working to period 7', we compute the
projected on-hand mventory and the net requirements as follows.

=1 -1D+Ne—-1)—- D)
N{t) = max {0, min {D{r), —1()}

2. Scheduling. The scheduling procedure is done from the last (T} period, working
backward in time.

. Initialize variables.

T+ 1y=0
X(T+1)=40
¥(T + 1) = desired ending FGI level

b. For each period ¢, starting with T’ and working down 1o pericd 1, compute

Y=Y+ D+ D+ 1) —-Xtt+1D
X(r) = min {l(e), D(t) + Y ()}

¢. The equation ¥ (0) = Y (1) + D(1) — X (1} provides an casy capacity check, This
value should be zero if all the infeasibilities were addressed in phase L. If not, the
schedule is infeasible and phase I needs to be redone correctly.

4. Assuming there are no remaining schedule infeasibilities, we compute the schedule of
production starts by offsetting the production quantities by the minimum practical
lead time as follows:

S =X +T)) fort=1,2,...,T-Tf
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The MRP-C scheduling procedure computes the amount of build-ahead from the
end of the time horizon T backward. The level of build-ahead in period T is the desired
level of inventory at the end of the planning horizon. One would generally set this to zero,
unless there were some exceptional reason to plan to finish the planning horizon with
excess inventory. At each period, output will be either the capacity or the total demand
{net demand plus build-ahead), whichever is less. This is intuitive since production
cannot exceed the maximum rate of the line and should not exceed demand (including
build-ahead).

If the build-ahead for period § is positive, the schedule is infeasible. The amount of
build-ahead in period O indicates the amount of additional finished inventory needed at
¢ — 0 to make the schedule feasible. However, if phase I has addressed all the capacity
and WIP infeasibilities, ¥ (0) will be zero. Indeed, this is the entire point of phase 1.

The final output of the MRP-C procedure is a list of production staris that will
meet all the (possibly revised) due dates within capacity and material constraints while
producing a minimum of build-ahead inventory.

Example:

We continue with our example from phase I and apply the second phase of MRP-C,
This generates the results in Table 15.12. Note that the schedule calls for production to
be as high as possible, being limited by WIP in the first two periods, and then limited
by capacity thereafter, until period 12. At this point, production decreases to 90 units,
which is below CATAWIP but is sufficient to keep up with demand.

Notice that while MRP-C does the dirty work of finding infeasibilities and identi-
fying possible actions for remedying them, it leaves the sensitive judgments concerning
increasing capacity (whether, how, where) and delaying jobs (which ones, how much)
up to the user. As such, MRP-C encourages appropriate use of the respective talents of
humans and computers in the scheduling process.

TaBLE 15.12 Final Production Schedule

Projected Net
Period | Demand | on Hand | Requirements CATAWIP | Build-Ahead | Production | Starts
¢ D(t) I N wi{h) Y(t) Xty S0
0 0 0 0
1 90 -50 90 95 5 95 100
2 100 -95 95 90 0 90 100
3 -85 95 100 5 100 100
4 80 —80 80 100 25 100 100
5 70 =70 70 100 55 100 125
6 130 —-130 130 100 25 100 100
7 120 —-120 120 100 5 100 100
8 110 =110 110 125 20 125 100
9 110 —110 110 100 10 100 90
10 110 —110 110 100 0 100 90
11 100 —100 100 100 0 100 90
12 90 —50 90 100 0 ] 1)
13 90 —90 90 100 1] 90
14 90 ~3) 90 100 0 90
15 90 —90 90 100 0 S0
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15.5.3 Extending MRP-C to More General Environments

The preceding described how to use the MRP-C procedure to schedule one process
(workstation, line, or line segment) represented by the conveyor model. The real power
of MRP-C is that it can be extended to multistage systems with more than a single
product.

For a serial line, this extension is simple. The production starts into a downstream
station represent the demands upon the upstream station that feeds it. Thus, we can
simply apply MRP-C by starting at the last station and working backward to the front
of the line. Likewise, the time-adjusted WIP (TAWIP) levels will be generated by the
production of the upstream process.

If there are assembly stations, then production starts must be translated to demands
upon each of the stations feeding them. This is exactly analogous to the bill-of-material
explosion concept of MRP, except applied to routings. Otherwise the MRP-C procedure
remains unchanged.

In systems where multiple routings (i.., producing different products) pass through
a single station, we must combine the individual demands (ie., production starts at
downstream stations) to form aggregate demand. Since the different products may
have different processing times at the shared resource, it is important that the MRP-C
calculations be done in units of time instead of product. That is, capacity, demand,
WIP, and so forth should all be measured in hours. This is sirnilar in spirit to the idea
of maintaining a constant amount of work rather than a constant number of units in a
CONWIP line with multiple products, which we discussed in Chapter 14.

In systems with multiple products, things get a bit more complex because we must
choose a method for breaking ties when more than one product requires build-ahead in
the same period. The wrong choice can schedule early production of a product with
little or no available WIP instead of another product that has plentiful WIP. This can
cause a WIP infeasibility when the next stage is scheduled. Several clever means for
breaking ties have been proposed by Tardif (1995), who also addresses other practical
implementation issues.

15.5.4 Practical Issues

The MRP-C approach has two clear advantages over MREP: (1) It uses a more accurate
model that explicitly considers capacity, and (2) it provides the planner with useful
diagnostics. However, there are some problems.

First, MRP-C relies on a heuristic and therefore cannot be guaranteed to find a
feasible schedule if one exists. (However, if it finds a feasible schedule, this schedule is
truly feasible.) Although certain cases of MRP-C can make use of an exact algorithm,
this is much slower (see Tardif 1995). In essence, the approach discussed above sacrifices
accuracy for speed. Given that it is intended for use in an iterative, “decision support”
mode, the additional speed is probably worth the small sacrifice in accuracy. Moreover,
any errors produced by MRP-C will make the schedule more conservative, That is,
MRP-C may require more adjustments than the minimum necessary {0 achieve feasibility.
Hence, schedules will be “more feasible” than they really need to be and will thus have
a better chance of being successfully executed.

Second, MRP-C, like virtually all scheduling approaches, implies a push philosophy
(i.e., it sets release times). As we discussed in Chapter 10, this makes it subject to ail
the drawbacks of push systems. Fortunately, one can integrate MRP-C {and indeed any
push system, including MRP) into a pull environment and obtain many of the efficiency,
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predictability, and robustness benefits associated with pull. We describe how this can be
done in the following section.

15.6 Production Scheduling in a Pull Environment

Recall the definitions of push and pull production control. A push system schedules
releases into the line based on due dates, while a pull system authorizes releases into
the line based on operating conditions. Push systems control release rates (and thereby
throughput) and measure WIP to see if the rates are too large or too small. Pull systems
do the opposite. They control WIP and measure completions to determine whether
production is adequate. Since WIP control is less sensitive than release control, pull
systems are more robust to errors than are push systems. Also, since pull systems directly
control WIP, they avoid WIP explosions and the associated overtime vicious cycle often
observed in push systems. Finally, pull systems have the ability to work ahead for short
periods, allowing them to exploit periods of better-than-average production.

For these reasons, we want to maintain the benefits of pull systems to whatever
extent possible. The question is, How can it be done in an environment that requires
a detailed schedule? In this section we discuss the link between scheduling and pull
production.

15.6.1 Schedule Planning, Pull Execution

Even the best schedule is only a plan of what should happen, not a guarantee of what will
happen. By necessity, schedules are prepared relatively infrequently compared to shop
floor activity; the schedule may be regenerated weekly, while material flow, machine
failures, and so forth happen in real time. Hence, they cannot help but become outdated,
sometimes very rapidly. Therefore we should treat the schedule as a set of suggestions,
not a set of requirements. concerning the order and timing of releases into the system.

A pull system is an ideal mechanism for linking releases to real-time status infor-
mation. When the line is already congested with WIP, so that further releases will only
increase congestion without making jobs finish sooner, a pull system will prevent re-
Jeases. When the line runs faster than expected and has capacity for more work, a pull
system will draw it in. Fortunately, using a pull system in concert with a schedule is not
at all difficult.

: To illustrate how this would work, suppose we have a CONWIP system in place
for each routing and make use of MRP-C to generate a schedule for the overall system.
Note that there is an important link between MRP-C and CONWIP: the conveyor model.
Thus, if the parameters are correct, MRP-C will generate a set of release times that are
very close to the times that the CONWIP system generates authorizations (pull signals)
for the releases. Of course, variability will always preventa perfect match, but on average
actual performance will be consistent with the planned schedule.

When production falls behind schedule, we can catchup if there is a capacity cushion
{e.g., a makeup time at the end of each shift or day) available. If no such cushion
is available, we must adjust the schedule at the next regeneration. When production
outpaces the schedule, we can allow it to work ahead, by allowing the line to pull in
more than was planned. A simple rule comparing the current date and time with the date
and time of the next release can keep the CONWIP line from working too far ahead. In
this way, the CONWIP system can take advantage of the “good” production days without
getting too far from schedule.
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When we cannot rely on a capacity cushion to make up for lags in production (e.g.,
we are running the line as fast as we can), we can supplement the CONWIP control
system with the statistical throughput control (STC) procedure described in Chapter
13. This provides a means for detecting when production is out of control relative
to the schedule. When this occurs, either the system or the MRP-C parameters need
adjustment. Which to adjust may pose an important management decision. Reducing
MRP-C capacity parameters may be tantamount to admitting that corporate goals are not
achievable. However, increasing capacity may require investment in equipment, staff,
increased subcontracting costs, or eonsulting.

15.6.2 Using CONWIP with MRP

Nothing in the previous discussion about using CONWIP in conjunction with a scheduie
absolutely requires that the schedule be generated with MRP-C. Of course, since MRP-C
considers capacity using the same conveyor model that underlies CONWIP, we would
expect it to work well. But we can certainly use CONWIP with any scheduling system,
including MRP. We would do this by using the MRP-generated list of planned order
releases, sorted by routing, as the work backlogs for each CONWIF line. The CONWIP
system then determines when jobs actually get pulled into the system.

As with MRP-C, we can employ a capacity cushion, work ahead, and track against
schedule. The primary differcnce is that the underlying model of MRP and CONWIP are
not consistent. Consequently, MRP is more likely to generate inconsistent planned order
release schedules than is MRP-C. This can be mitigated, somewhat, by employing good
master production scheduling techniques and by debugging the process using bottom-up
replanning.

15.7 Conclusions

Production problems are notoriously difficult, both because they involve many conflicting
goals and because the underlying mathematics can get very complex. Considerable
scheduling research has produced formalized measures of the complexity of scheduling
problems and has generated some good insights. However, it has not yielded good
solutions to practical scheduling situations.

Because scheduling is difficult, an important insight of our discussion is that it is
frequently possible to avoid hard problems by solving different ones. One example is
to replace a system of exogenously generated due dates with a systematic means for
quoting them. Another is to separate the probilem of keeping cycle times short (solve
by using small jobs) from the problem of keeping capacities high (solve by sequencing
like jobs together for fewer setups). Given an appropriately formulated problem, good
heuristics for identifying feasible (not optimal) schedules are becoming available.

An important recent trend in scheduling research and software development is to-
ward finite-capacity scheduling. By overcoming the fundamental flaw in MRP, these
models have the potential to make the MRP T hierarchy much more effective in practice.
However, to provide flexibility for accommodating intangibles, an effective approach to
finite-capacity scheduling is for the system to evaluate schedule feasibility and generate
diagnostics about infeasibilities. A procedure designed to do this is capacitated material
requirements planning—MRP-C,

Finally, although scheduling is essentially a push philosophy, it is possible to use
a schedule in concert with a pull system. The basic idea is to use the schedule to plan
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work releases and the pull system to execute them. This offers the planning benefits of
a scheduling system along with the environmental benefits of a pull system,

Study Questions

. What are some goals of production scheduling? How do these conflict?

. How does reducing cycle time support several of the above goals?

. What motivates maximizing utitization? What motivates not maximizing utilization?
. Why is average tardiness a better measure than average lateness?

L o e R —

. What are some drawbacks of using service level as the only measure of due date
performance?

6. For each of the assumptions of classic scheduling theory, give an example of when it might
be valid. Give an example of when each is not valid.

7. Why do people use dispatching rules instead of finding an optimal schedule?

8. What dispatching rule minimizes average cycle time fora deterministic single machine?
What rule minimizes maximum tardiness? How can one easily check to see if a schedule
exists for which there are no tardy jobs?

9, Pravide an argument that ro matier how sophisticated the dispatching rule, it cannot solve
the problem of minimizing average tardiness.

10. What is some evidence that there are some scheduling problems for which no polynomial
algorithm exists?

11, Address the following comment: “Well, mayhe today’s computers are {00 slow to solve the
job shop schedufing problem, but new paralle processing technology will speed them up to
the point where computer time should not be an obstacle to solving it in the near future.”

12, What higher-level planning problers are related to the production scheduling problem?
What are the variables and constraints in the high-level problems? What are the variables
and constraints in the lower-level scheduling problem? How are the problems linked?

13. How weli do you think the policy of planning with a schedule and executing with a pull
system should work using MRP-C and CONWIP? Why? How well should it work using
MRP and kanban? Why?

Problems

1. Consider the following three jobs to be processed on a single machine:

Job Process Due
Number Time Date
1 4 2
2 2 3
3 ] 4

Enumerate all possible sequences and compute the average cycle time, total tardiness, and
maximunn lateness for each. Which sequence works best for each measure? [dentify it as
EDD, SPT, or something else.

2. You are in charge of the shearing and pressing operations in a job shop. When you arrived this
moraing, there were seven jobs with the following processing times.
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Processing Time

Joh Shear Press
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a. What is the makespan under the SPT dispatching ruie?
b. What sequence yields the minimum makespan?
c. What is this makespan?

. Your boss knows factory physics and insists on reducing average cycle time to help keep jobs

on time and reduce congestion, For this reason, your personal performance evaluation is based
on the average cycle time of the jobs through your process center. However, your boss also
knows that late jobs are extremely bad, and she will fire you if you produce a schedule that
includes any late jobs. The jobs listed below are staged in your process center for the first shift.
Sequence them such that your evaluation will be the best it can be without getting you fired.

Processing time 6 2 4 9 3
Due date 33 13 & 23 31

. Suppose daily production of a CONWIP line is nearly normally distributed with a mean of

250 pieces and a standard deviation of 50 pieces. The WIP level of the CONWIP line is 1,250

pieces. Currently there is a backlog of 1,400 pieces with an “emergency position” 150 pieces

out. A new order for 100 pieces arrives.

a. Quote a lead time with 95 percent confidence if the new order is placed at the end of the
backlog and if it is placed in the emergency position.

b. Quote a lead time with 99 percent confidence if the new order is placed at the end of the
backlog and if it is placed in the emergency position.

. Consider the jobs on the next page. Process times for all jobs are one hour. Changeovers

between families require four hours. Thus, the completion time for job 1 is 5, for job 2 is 6,
for job 3 is i1, and so on.
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Family Due
Job Code Date

12
13
13
15
20
20
26
28

[ TRV <R - E = R T
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a. Compute the total tardiness of the sequence.
b. How many possible sequences are there?
¢. Find a sequence with no tardiness.

6. The Hickory Flat Sawmill (HFS) makes four kinds of lumber in ore mill. Orders come from a
variety of lumber companies to a ceatral warehouse. Whenever the warehouse hits the reorder
point, an srder is placed to HFS. Pappy Red, the sawmill manager, has set the lot sizes to be
run on the mill based on historical demunds and common sense. The smallest amount made is
a lot of 1,000 board-feet (1 kbf). The time it takes to process a lot depends on the product, but
the time does not vary more than 25 percent from the mean. The changeover time can be quite
long depending on how long it takes to get the mill producing good product again, The
shortest time that anyone can remember is two hours, Once it took all day (eight hours). Most
of the time it takes around four hours. Demand data and run rates are given in Table 15.13,
The miil runs productively eight hours per day, five days per week (assume 4.33 weeks per
month).

The lot sizes are 50 of the knotty 1 x 10, 34 for the clear 1 x 4, 45 for the clear 1 x 6,
and 40 for the rough plank. Lots are run on a first-come, first-served basis as they arrive from
the warehouse. Currently the average response time is nearly three weeks (14.3 working
days). The distributor has told HFS that HFS needs to get this down to two weeks in order to
continue being a supplier.

a. Compute the effective SCV ¢? for the mill. What portion of ¢Z is due to the term in square
brackets in Equation (15.8)7 What can you do to reduce it?

b. Verify the 14.3-working-day cycle time.

¢. What can you do to reduce cycle times without investing in any more equipment or
physical process improveraents?

TaBLE 15.13 Data for the Sawmill Problem

Parameter Knotty 1 x 10 Clear1x4 { Clearl1 x6 | Rough Plank

Demand (kbf/mio) 50 Y70 45 80
One lot time (hour) 0.2000 0.4000 0.6000 0.1000
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7. Single parts arrive to a furnace at a rate of 100 per hour with exponential times between
arrivals. The furnace time is three hours with essentially no variability. It can hold 500 parts.
Find the batch size that minimizes total cycle time at the furnace.

8. Consider a serial line composed of three workstations, The first workstation has a production
rate of 100 units per day and a minimum practical lead time T of three days. The second has
a rate of 90 units per day and 77 = 4 days; and the third has a rate of 100 and T = 3 days.
Lead time for raw material is one day, and there are custently 100 units on hand.

Cutrently there are 450 units of finished goods, 95 units ready to go into finished goods
on the first day, 95 on the second, and 100 on the third; all from the last station. The middle
station has 35 units completed and ready to move to the last station and 90 uaits ready to come
out in each of the next four days. The first station has no WIP completed, 95 units that will
finish on the first day, zero units that will finish the second day, and 100 units that will finish
the third day.

The demand for the line is given in the table below.

Day from Amount

Start Due
1 80

2 80

i 80

4 g0

5 80

6 130

7 150

8 180

9 220
10 240
11 210
12 150
13 90
14 80
15 80

Develop & feasible schedule that minimizes the amount of inventory required. If it is
infeasible, adjust demands by moving them out. However, afl demand must be met within 17
days.
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AGGREGATE AND
WORKFORCE PLANNING

And I remember misinformation followed us like a plague,
Nobody knew from time to time if the plans were changed.
Paul Simon

16.1 Introduction

A variety of manufacturing management decisions require information about what a
plant will produce over the next year or two. Exampes include the following:

1. Staffing. Recruiting and training new workers is a time-consuming process, Man-
agement needs a long-term production plan to decide how many and what type of workers
10 add and when to bring them on-line in order to meet production needs. Conversely,
eliminating workers is costly and painful, but sometimes necessary. Anticipating re-
ductions via a long-term plan makes it possible to use natural attrition, or other gentler
methods, in place of layoffs o achieve at least part of the reductions.

2. Procurement. Contracts with suppliers are frequently set up well in advance of
placing actual orders, For example, a firm might need an opportunity to “certify” the
subcontractor for guality and other performance measures. Additionally, some procure-
ment lead times are long (e.g.. for high-technology components they may be six months
or more). Therefore, decisions regarding contracts and long-lead-time orders must be
made on the basis of a long-term production plan.

3, Subcontracting. Management must arrange contracts with subcontractors to
manufacture entire components or to perform specific operations well in advance of
actually sending out orders. Determining what types of subcontracting to use requires
long-term projections of production requirements and a plan for in-house capacity mod-
ifications.

4. Marketing. Marketing personnel should make decisions on which products to
promote on the basis of both a demand forecast and knowledge of which products have
tight capacity and which do not. A long-term production plan incorporating planned
capacity changes is needed for this.

The module in which we address the important question of what will be produced
and when it will be produced over the long range is the aggregate planning (AP) module.
As Figure 13.2 illustrated, the AP module occupies a central position in the production

535



536

Part il Principles in Practice

planning and control (PPC) hierarchy. The reason, or course, is that so many important
decisions, such as those listed, depend on a long-term production plan.

Precisely because so many different decisions hinge on the long-range production
plan, many different formulations of the AP module are possible. Which formulation
is appropriate depends on what decision is being addressed. A model for determining
the time of staffing additions may be very different from a model for deciding which
products should be manufactured by outside subcontractors. Yet a different model might
make sense if we want to address baoth issues simultaneously.

The staffing problem is of sufficient importance to warrant its own maodule in the
hierarchy of Figure 13.2. the workforce planning (WP) module. Although high-level
workforce planning (projections of total staffing increases or decreases, institution of
training policies) can be done using only a rough estimate of future production based on
the demand forecast, low-level staffing decisions (timing of hires or layoffs, scheduling
usage of temporary hires, scheduling training) ace often based on the more detailed
production information contained in the aggregate plan. In the context of the PPC
hierarchy in Figure 13.2. we can think of the AP module as either refining the output of
the WP module or working in concert with the WP module. In any case, they are closely
related. We highlight this relationship by treating aggregate planning and workforce
planning together in this chapter.

As we mentioned in Chapter 13, linear programming is a particularly useful tool
for formulating and solving many of the problems commonly faced in the aggregate
planning and workforce planning modules. In this chapter, we will formulatc several
typical AP/WP problems as linear programs {L.Ps). We will also demonstrate the use
of linear programming (LP) as a solution teol in various examples. Our goal is not so
much to provide specific solutions to particular AP programs, but rather to illustrate
general problem-solving approaches. The reader should be able to combine and extend
our solutions to caver situations not directly addressed here.

Finally, while this chapter will naot make an I.P expert out of the reader, we do
hope that he or she will become aware of how and where LP can be used in solving AP
problems. If managers can recognize that particular problems are well suited to LP, they
can easily obtain the technical support (consultants, internal experts) for carrying out
the analysis and implementation, Unfortunately, far too few practicing managers make
this connection; as a result, many are hammering away at problems that are well suited
to linear programming with manual spreadsheets and other ad hoc approaches.

16.2 Basic Aggregate Planning

We start with a discussion of simple aggregate planning situations and work our way
up to more complex cases. Throughout the chapter, we assume that we have a demand
forecast available to us. This forecast is generated by the forecasting module and gives
estimates of periodic demand over the planning horizon. Typically, periods are given
in months, although further into the future they can represent longer intervals. For
instance, periods 1 to 12 might represent the next 12 months, while periods 13 t0 16
might represent the four quarters following these 12 months. A typical planning horizon
for an AP module is one to three years.

16.2.1 A Simple Model

Our first scenario represents the simplest possible AP module. We consider this case not
because it leads to a practical model, but because it illusirates the basic issues, provides a
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basis for considering more realistic situations, and showcases how linear programming
can support the aggregate planning process. Although our discussion does not presume
any background in linear programming, the reader interested in how and why LP works
is advised to consult Appendix 16A, which provides an elementary overview of this
important technique.

For modeling purposes, we consider the situation where there is only a single prod-
uct, and the entire plant can be treated as a single resource. In every period, we have a
demand forecast and a capacity constraint. For simplicity, we assume that demands rep-
resent customer orders that are due at the end of the period, and we neglect randomness
and yield loss.

Tt is obvious under these simplifying assumptions that if demand is less than capacity
in every period, the optimal solution is to simply produce amounts equal to demand in
every period. This solution will meet all demand just-in-time and therefore will not
build up any inventory between periods, However, if demand exceeds capacity in some
periods, then we must work ahead (i.e., produce more than we need in some previous
period). If demand cannot be met even by working ahead, we want our model to tell us
this. To model this situation in the form of a linear program, we introduce the following
notation;

¢ = an index of time periods, where t = 1, ..., ¢, so f is planning horizon for
problem
d, = demand in period ¢, in physical units, standard containers, or some other
appropriate quantity (assumed due at end of period)
¢, = capacity in period 7, in same units used for d;
r = profit per unit of product sold {not including inventory-carrying cost)
k = cost to hold one unit of inventory for one period
X, = quantity produced during period ¢ (assumed available to satisfy demand at
end of period 1)
S, = quantity sold during period  (we assume that units produced in ¢ are
available for sale in ¢ and thereafter)
I, = inventory at end of period ¢ (after demand has been met); we assume Jy is
given as data

Jn this notation, X,, S;. aad I, are decision variables. That s, the computer program
solving the LP is free to choose their values so as to minimize the objective, provided
the constrajuts are satisfied. The other variables—d;, ¢;, ¥, h—are constants, which
must be estimated for the actual system and supplied as data. Throughout this chapter,
we use the convention of representing variables with capital letters and constants with
lowercase letters.

We can represent the problem of maximizing net profit minus inventory carrying
cost subject to capacity and demand constraints as

'

Maximize > rS —hl (16.1)
=1
Subject to:
S <d, r=1,...,¢ (16.2)
X <q t=1,...,1 (16.3)
L=5L +X -8 r=1,....1 (16.4)
XS, 5=0 r=1,.... f (16.5)
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The objective function computes net profit by multiplying wnit profit » by sales §, in
each peried 1, and subtracting the inventory carrying cost A times remaining inventory f,
atthe end of period ¢, and summing over all periods in the planning horizon. Constraints
(16.2) limit sales to demand. If possible, the computer will make all these constraints
tight, since increasing the S, values increases the objective function, The only reason
that these constraints will not be tight in the optimal soluticn is that capacity constraints
(16.3) will not permitit.! Constraints (16.4), which are of a form common to almost all
multiperiod aggregate planning models, are known as balance constraints. Physically,
all they represent is conservation of material; the inventory at the end of period :({;} is
equal ta the inventory at the end of period t — 1(/, ) plus what was produced during
period ¢ (X,) minus the amount sold in period f {S,). These constraints are what force
the computer to choose values for X;, §;, and J; that are consistent with our verbal
definitions of them. Constraints (16,5) are simple nonnegativity constraints, which rule
out negative production or inventory levels. Many, but not all, computer packages for
solving LPs automatically force decision variables to be nonnegative unless the user
specifies otherwise.

16.2.2 AnLP Example

To make the above formulation concrete and to illustrate the mechanics of solving it via
linear programming, we now consider a simple example. The Excel spreadsheet shown
in Figure 16.1 contains the unit profit » of $10, the one-period unit holding cost 4 of
$1, the initial inventory Jo of 0, and capacity and demand data ¢, and d; for the next six
months. We will make use of the rest of the spreadsheet in Figure 16.1 momentarily.
For now, we can express LP (16.1)<16.5) for this specific case as

Maximize 10(§; + Sa+ S3 -+ 85+ S5+ S — Wi+ L+ L+ 14+ Is + Ig) {16.6)
Subject to:
Demand constraints

5 <80 {16.7)
Sz < 100 (16.8)
$3 < 120 (16.9)
8y < 140 (16.10)
Ss <90 {16.11)
Se < 140 (16.12)
Capacity constraints
X, =100 (16.13)
X, < 100 (16.14)
X; <100 (16.15)
X4 =120 (16.16)
X5 <120 (16.17)
Xe <120 (16.18)

17f we want to consider demand as inviolable, we could remove constraints (16.2) and replace §; with d;
in the objective and constrainis {16.4). The problem with this, however, is that if demand is capacity-
infeasible, the computer will just come back with a message saying “infeasible,” which doesn't tell us why.
The formulation here will be feasible regardless of demand; it simply won't make sales equal to demand if
there is not enough capacity, and thus we will know what demand we are incapable of meeting from the
solution.
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THS_I+5_245_3+5_4+5_$+5_6) - ho(L1+1_2+1_3+1_4+1_5+1_6)

Constraints:
§.1 0 <= a0 d_1
5. ] <= 100 d2
B s 1] <= 120 d3
i s 4 0 = 140 d4
il 5.5 0 <= 20 45
5.6 0 <= 140 | d.6
X1 0 <= 100 c 1
X2 0 < 100 c2
X3 0 <= 100 c3
X4 0 <= 120 c4
X o <= 120 5
X6 0 <= 120 c 6
11 0-X_1+5_1 i = il
R 121 1-X 2482 0 = 0
il 1 312X 3+8 3 0 = (]
B 141 3-X 445 4 0 = 1]
Bl 1.5-1 4-X_5+8 5 (1] = a
0o = 0

| 161 5X 64856 | L
1 Note: X_t, 5_t and 1_t mubt be >= 0

Inventory balance constraints
H-X1+5%=0
L-—Hh—-X4+5=0
h-Lh—X:+8§5=0
ILi— L —Xs+ 8 =0
Is—Li—Xs+ 8 =0
ls—Is—Xe+S5=0
Nonnegativity constraints
X1, X2, X3,X4, X5, X6 20
81482, 83, 84, 85, 86 >0
o b3, e, 15, 1s 2 0
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(16.19)
(16.20)
(16.21)
(16.22)
(16.23)
(16.24)

(16.25)
(16.26)
(16.27)

Some linear programming packages allow entry of a problem formulation in a format
almost identical to (16.6) to (16.27) via a text editor. While this is certainly convenient
for very small problems, it can become prohibitively tedious for large ones. Because
of this, there is considerable work going on in the OM research community to develop
modeling languages that provide user-friendly interfaces for describing large-scale op-
timization problems (see Fourer, Gay, and Kernighan 1993 for an excellent example of a
modeling language). Conveniently for us, LP is becoming so prevalent that our spread-
sheet package, Microsoft Excel, has an LP solver built right into it. We can represent
and solve formulation (16.6) to (16.27) right in the spreadsheet shown in Figure 16.1.

The following technical note provides details on how to do this.



Part 1l Principles in Practice

Technical Note—Using the Excel LP Solver

Although the reader should consult the Excel documentation for details about the release in
use, we will provide a brief overview of the LP solverin Excel 5.0. The first step is to establish
cells for the decision variables (B11:G13 1n Figure 16.1). We have initially entered zeros for
these, but we can set them (o be anything we like; thus, we could start by setting X, = d,,
which would be closer to an optimal solution than zeros. The spreadsheet is a good place
to play what-if games with the data. However, eventually we will turn over the problem of
finding optimal values for the decision variables to the LF solver. Notice that for convenience
we have also entered a column that totals X,, 5, and {,. For example, cell H11 contains a
formula to sum cells B11:G1 1. This allows us to write the objective function more compactly.

Once we have specified decision variables, we construct an objective function in cell B16.
We do this by writing a formula that multiplies r (cell B2) by total sales {cell H12) and then
subtracts the product of & tceil B3) and total inventory (cel] H13). Since all the decision
variables are zero at present, this formula also returns a zero; that is, the net profit on no
production with no initial inventory is zero.

Next we need to specify the constraints (16.7) to (16.27). To do this, we need to develop
formulas that compute the left-hand side of each constraint. For constraints (16.7) to {16.18)
we really do not need to do this, since the lefi-hand sides are only X, and S, and we already
have cells for these in the variables portion of the spreadsheet. However, for clarity, we will
copy them to cells B19:B30, We will not do the same for the nonnegativity constraints (16.25)
to (16.27), since it is a simple matter to choose all the decision variables and force them to be
grealer than or equal to zero in the Excel Solver menu. Constraints (16.19) to (16.24) require
us to do work, since the lefi-hand sides are formulas of muitiple variables, For instance, cell
B31 contains a formula to compuie §; — fy — X + 51 (thatis, B13 — B4 — Bll + B12). We
have given these celis names to remind us of what they represent, although any names could
be used, since they are not necessary for the computation. We have also copied the values
of the right-hand sides of the cunstraints into cells D19:D36 and labeled them in column E
for clanty. This is not strictly necessary, but does make it easier to specify constraints in the
Excel Solver, since whole blocks of constraints can be specified (for example, B19:B30 <
D19:D30). The equality and inequality symbols in column C are also unnecessary, but make
the formulation easier to read.

To use the Excel L Solver, we choose Formula/Selver from the menu. In the dialog
box that comes up (see Figure 16.2), we specify the cells containing the objective, choose to
maximize or minimize, and specify the cells containing decision variables (this can be done
by pointing with the mouse}. Then we add constraints by choosing Add from the constraints
section of the form. Another dialog box (see Figure 16.3) comes up in which we fill in the
cell containing the left-hand side of the constraint, choose the relationship (>, <, or =), and
fill in the right-hand side.

Note that the actual constraint is not shown explicitly in the spreadsheet; it is entered only
in the Sotver menu. However, the right-hand side of the constraint can be another cell in the
spreadsheet or aconstant. By specifying a range of cells for the right-hand side and a constant
for the left-hand side, we can add a whole set of constraints in a single command. For instance,
the range B11:G13 represents all the decision variables, so if we use this range as the left-hand
side, a > symbol, and a zero for the right-hand side, we will represent all the nonnegativity
constraints (16.25) to {16.27). By choosing the Add button after each constraint we enter,
we can add all the model constraints. When we are done, we choose the OK button, which
returns us to the original form. We have the option to edit or delete constraints at any time,

Finally, before unning the model, we must tell Excel that we want it to use the LP solution
algorithm.2 We do this by choosing the Options button to bring up another dialog box (see
Figure 16.4) and choosing the Assume Linear Model option. This form also allows us 1o
limit the time the model wili run and to specify certain tolerances. If the model does not

2pxpel can also solve nonlinear optimization problems and will apply the nonlinear algorithin as a
default. Since LP is muck more efficient, we definitely want to choose it as lorg as our model meets the
requirements. All the formulations in this chapter are linear and therefore can use LP.
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Froune 16.2
Specification of objectives and constraints in Excel

converge to an answer. the most likely reason is an error in one of the constraints, However,

sometimes increasing the search time or reducing folerances will fix the problem when the

solver cannot find a soiution. The reader should consult the Excel manual for more detailed
; documentation on this and other featurcs, as well as information on upgrades that may have
. oceurred since this witing. Choosing the OK button returas us o the original form,
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Once we have done all this, we are ready to run the model by choosing the Solve bution.

The program will pause to set up the problem in the proper format and then will go through
a sequence of trial solutions (although not for jong in such a small problem as this).

Basically, LP works by first finding a feasible solution—one that satisfies all the
constraints—and then generating a succession of new solutions, each better than the
last. When no further improvement is possible, it stops and the solution is optimal: It
maximizes or minimizes the objeclive function. Appendix 16A provides background on
how this process works.

The algorithm will stop with one of three answers:

1. Could not find a feasible solution. This probably means that the problem is
infeasible; that is, there is no solution that satisfies all the constraints. This could be
due to a typing error (e.g., a plus sign was incorrectly typed as a minus sign) or a real
infeasibility (e.g., it is not possible to meet demand with capacity). Notice that by clever
forrmulation, one can avoid having the algorithm terminate with this depressing message
when real infeasibilities exist. For instance, jn formulation (16.6) to (16.27), we did
not force sales to be equal to demand. Since cumulative demand exceeds cumulative
capacity, it is obvious that this would not have been feasible. By setting separate sales
and production variables, we let the computer tell us where demand cannot be met. Many
variations on this trick are possible.

2. Does not converge. This means eithet that the algorithm could not find an optimal
solution within the allotted time (so increasing the time or decreasing the tolerances under
the Options menu might help) or that the aigorithm is able to continue finding better
and better solutions indefinitely. This second possibility can occur when the problem
is unbounded: The objeclive can be driven to infinity by letting some variables grow
positive or negative without bound. Usually this is the result of a failure to properly
constrain a decision variable. For instance, in the above model, if we forgot to specify
that all decision variables must be nonnegative, then the model will be able to make the
objective arbitrarily large by choosing negative vatuesof /;,t = 1,..., 6. Of course, we
do not generate revenue via negative inventory levels, so it is important that noanegativity
constraints be included to rule out this nonsensical behavior.”

3. Found a solution. This is the outcome we want. When it occurs, the program will
write the optimal values of the decision variables, objective value, and constraints into
the spreadsheet. Figure 16.5 shows the spreadsheet as modified by the LP algorithm.
The program also offers three reports—Answer, Sensitivity, and Limits—which write
information about the solution into other spreadsheets. For instance, highlighting the
Answer report generates a spreadsheet with the information shown in Figures 16.6 and
16.7. Figure 16.8 contains some of the information contained in the report generated by
choosing Sensitivity.

Now that we have generated a solution, let us interpret it. Both Figure 16.53—the
final spreadsheet—and Figure 16.6 show the optimal decision variables. From these we
see that it is not optimal to produce at full capacity in every period. Specifically, the
solution calls for producing only 110 units in month 5 when capacity is 120. This might
seem odd given that demand exceeds capacity. However, if we look more carefully, we
see that cumulative demand for pericds 1 to 4 is 440 units, while cumulative capacity

3We will show how 1o modify the formulation to allow for backordering, which is like allowing negative
inventory positions, without this inappropriately affecting the objective function, later in this chapter.
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for those periods is only 420 units. Thus, even when we run flat out for the first four
months, we will fail short of meeting demand by 20 units. Demand in the final two
months is only 230 units, while capacity is 240 units. Since our model does not permit
backordering, it does not make sense to produce more than 230 units ia months 5 and 6.
Any extra units cannot be used to make up a previous shortfall.

Figure 16.7 gives more details on the constraints by showing which ones are binding
or tight (i.e., equal to the right-hand side) and which ones are nonbinding or slack, and
by how much. Most interesting are the constraints on sales, given in (16.7) to (16.12),
and capacity, in (16.13) to (16.18). As we have already noted, the capacity constraint
on Xs is nonbinding. Since we only produce 110 units in month 5 and have capacity for
120, this constraint is slack by 10 units. This means that if we changed this constraint
by alittle (e.g., reduced capacity in month 5 from 120 to 119 units), it would not change
the optimat solution at all.

In this same vein, all sales constraints are tight except that for S,. Since sales are
limited to 140, but optimal sales are 120, this constraint has slackness of 20 units. Again,
if we were 10 change this sales constraint by a little (e.g.. limit sales to 141 units), the
optimal solution would remain the same.

In contrast with these slack constraints, consider a binding constraint. For instance,
consider the capacity constraint on Xy, which is the seventh one shown in Figure 16.7
Since the model chooses production equal to capacity in month 1, this constraint is tight.
If we were to change this int by i ing or d ing capacity, the solution
would change. If we relax the constraint by increasing capacity, say, to 101 units, then
we will be able to satisfy an additional unit of demand and therefore the net profit will




Part Il Principles in Practive

FIGURE 16.6 F1GURE 16.7
Optimal values report for LP example Optimal constraint status for LP example
Micrasoft Excel 5.0 Answer Ropart Microsoft Excel 5.0 Answer Report
Workshset: [BASICAP.XLS]Figure 16.5 Warkshest: [BASICAP.XLS)Figure 16.5
Report Created: 51585 12:22 Report Created: 5/15/95 12:22
Targe! Call (Max) o Constraints
Call Name  Origlnal Valus Final Value Ceil Name Celi Valus Formula Status Slack
$B%18 Net Profit 0 5440 38§70 51
$B320 f 2 MO0 $B%20<= 0
$B§21 S 3 B 120 $B3$21<=30%31 Binding ™
Adjustable Cells . :gssgg 5_4 - 120 <=3D§22 NolBinding 20
CTol __ Name nalValoe Pinaivaive 3882 58 e S‘J% _cgm Binding e
¢ Oy ] 50 $B324 S 6 ﬁ )
& 3 I R (] sBdes A1 i
e i 528 X2 S
£812 5 4 8~ 130 $8%27 X3 - R ]
%f:h 55 9 o0 §Bg28 X4 _ ing . ___. 0
$c§iz 5.6 [ 140 $B§29 X 5 irding 10
$BS11 X I [+ $8530 X 6 = e @
$C1T X 2 0 100 $B%T - 0-X_1+5 1 2]
$O§Ti X3 T == 5 " {00 $8532 |_2-1_1-X_Z+8 2 0
$EST1 X 4 ] 120 £6833 1 3L 2-X 345 il
$F§11 X 5 o 110 SBGH AL 3K de5 4 0
G811 X 6 i) 120’ 38535 {51 4-X 6+8 5 )
B513 | [ 20 $B$36 {_6-_5X _B+5 6 o
C$13 I ) 0 20 0512 5 1 84 »=0_HotBinding __ _TE0
0513 | i) 1] $CE12 5 ¢ 100 »= Mot Binding 100
R 3 3 $D%12 5.2 120 n= Nt Binding 120
%13 1.5 a7 2D $E}12 5.4 . 120 $EBi2a=0 NotBinding 129
$G$i3_ L8 T3 0 $FE12 5.5 : 90 $F12>= Not Blndi %0
.2 - - - 36§12 5.6 _ 140 $G812>= Noi Binding 149
$B%11 X1 - 100 $B§11>=0 Not Binding
31 X 1 A== Not 100
sos1 X3 o 100 $0$1>=0  _ Not Bindin 100
E31t X_d 120 §E511>20 Not Bind 120
SRl X5 110 $F§11>m0 ot Binding 110
3651 K6 . 120 _$G511>=0 ol Binging 2%
$B83 L1 20" $B§13>= Not Binding 20
$C513 1.2 20_$C$13>=0 Not Binding 20
$DS13 | 3 - 0 $0$132=0 Binding 0
$E$1AT 4 _ 0 $EFIB>=0 Binding 0
§F513 |5 20 §F$13>=0 Nol Bindiog " 50
56513 1.6 0 $6513s=0 Bindng 0

increase. Since we will produce the extra item in month 1, hold it for three months to
month 4 at a cost of $1 per month, and then sell it for $10, the overall increase in the
objective from this change willbe $10 —3 = $7. Conversely, if we tighten the constraint
by decreasing capacity, say to 99 units, then we will only be able to carry 19 units from
month 1 to month 3 and will therefore lose one unit of demand in month 3. The loss in
net profit from this unit will be $8 (§10 — $2 for two months’ holding).

The sensitivity data generated by the LP algorithm shown in Figure 16.8 gives
us more direct information on the sensitivity of the final solution to changes in the
constraints. This report has a line for every constraint in the model and reports three
important pieces of information:*

1. The shadow price represents the amount the optimal objective will be

increased by a unit increase in the right-hand side of the constraint.

5. The allowable increase represents the amount by which the right-hand side can

be increased before the shadow price no longer applies.

3. The allowable decrease represents the amount by which the right-hand side
can be decreased before the shadow price no longer applies.

Appendix 16A gives a geometric explanation of how these numbers are computed.

4The report also contains sensitivity information about the coefficients in the objective function. See
Appendix 16A for a discussion of this.
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Microsoft Excel 5.0 Sensitivity Report
Worksheet: [BASICAP.XLS]FIgure 16.5
Raport Created: 5/15/05 12:22

Changing Cekbs
Final Heduced Objeclive  Allowabls  Allowabie
Name Vaiua  Coat Cosfficiant  Increass Decraass
B0 0 L[] 1E+30 3
F 100 0 10 1E+30 2
120 0 A0 1E+30 1
54 120 0 10 1 7
8.5 a0 0 ig 30 iD
? 5 6 140 0 19 1e+30 g
= 100 0 [ 1E30 7
X 100 0 [« TE+30 8
X 100 0 0 1E+30 1]
X 4 120 0 i TE+30 10
X5 110 [{] [£ 1 ]
X 6 20 i £ 1E+30 i
1 20 [1 -3 3 7
3 1_z 20 Q -1 F: 7
: 0 [ -1 7
. 1 B 1 i 1E+30
5 20 0 A )
3 16 0 -2 i 2 1E+30
Cor
Final Shadow Consiraint  Alowable  Allowsble
Call Name Valus _ Price A.H. Side  Increase  Decreess
$B%19 80 F

3 F 100 p 00 0 20
a0 2 720 5 20
4 120 0 140 1E+30 20
80 10 0 10 [2i]
4 140 ] 140 10 20
5 100 7 100 20 {

X_2 100 g 100 20
7 X : 100 g 3 70 {
B X_4 20 10 20 20 T2
% & 110 0 20 E+30 18
6 =] 1 20 10
131 0-X_1+5_1 [ 7 [1 poi] 1
- _1-X_2+5_% 0 3 20 1
$E8833 | 3l 2 X S 0 [} 20 1]
$B334 | 41 30 45 4 1 16 0 20 120
$B$35 | 51 aX 55 5 © ] [ 710 0
SB536 | 6-1 5K 6456 [} 3 0 20 10

To see how these data are interpreted, consider the information in Figure 16.8 on
the seventh line of the constraint section for the capacity constraint X; < 100. The
shadow price is $7, which means that if the.constraint is changed to X; < 101, net
profit will increase by $7, precisely as we computed above. The allowable increase is
20 units, which means that each unit capacity increase in period 1 up to a total of 20
units increases net profit by $7. Therefore, an increase in capacity from 100 to 120 will
increase net profit by 20 x 7 = $140. Above 20 units, we will have satisfied all the lost
demand in month 4, and therefore further increases will not improve profit. Thus, this
constraint will become nonbinding once the right-hand side exceeds 120. Notice that
the allowabie decrease is zero for this constraint. What this means is that the shadow
price of $7 is not valid for decreases in the right-hand side. As we computed above, the
decrease in net profit from a unit decrease in the capacity in month 1 is $8. In general,
we can only deterrine the impact of changes outside the allowable increase or decrease
range by actually changing the constraints and rerunning the LP solver.

The above examples are illustrative of the following general behavior of linear

programming models:
1. Changing the right-hand sides of nonbinding constraints by a small amount

does not affect the optimal solution. The shadow price of a nonbinding
constraint is always zero.
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2. Increasing the right-hand side of a binding constraint will increase the objective
by an amount equal to the shadow price times the size of the increase, provided
that the increase is smaller than the allowable increase,

3. Decreasing the right-hand side of a binding constraint will decrease the
objective by an amount equal to the shadow price times the size of the decrease,
provided that the decrease is smaller than the allowable decrease.

4. Changes in the right-hand sides beyond the allowable increase or decrease
range have an indeterminate effect and must be evaluated by resolving the
moedified model.

5. All these sensitivity results apply to changes in one right-hand side variable at
a time. If multiple changes are made, the effects arc not necessarily additive.
Generally, multiple-variable sensitivity analysis must be done by resolving the
maodel under the multiple changes.

16.3 Product Mix Planning

16.3.1 Basic Model

Now that we bave set up the basic framework for formulating and solving aggregate
planning problems, we can examine some commonly encountered situations. The first
realistic aggregate planning issue we will consider-s that of product mix planning. To do
this, we need to extend the model of the previous section to consider multiple products
explicitly. As mentioned previously, allowing multiple products raises the possibility of
a “floating bottleneck.” That is, if the different products require different amounts of
processing time on the various workstations, then the workstation that is most heavily
loaded during a period may well depend on the mix of products run during that period.
If fexibility in the mix is possible, we can use the AP module to adjust the mix in
accordance with available capacity. And if the mix is essentially fixed, we can use the
AP module to identify bottlenecks.

We start with a direct extension of the previous single-product model in which dermands
are assumed fixed and the objective is to minimize the inventory carrying cost of meeting
these demands. To do this, we introduce the following notation:

i = anindex of product, i = 1, ..., m, so m represents total number of products

j = an index of workstation, j = 1,...,n, so n represents total number of
workstations

¢ = an index of period, 7 = 1, ..., so 7 represenis planning horizon

d;, = maximum demand for product { in period ¢
d;, = minimum sales® allows of product i in period ¢
a;; = time required on workstation j to produce one unit of product ¢
c; = capacity of workstation j in period ¢ in units consistent with those used to
define g; }
r; = net profit from one unit of product §
h; = cost® to hold one unit of product i for one period ¢

5This might represent firm commitments that we da not want the computer prograr (o violate,

811 is common to set #; equat to the raw materials cost of product i times a one-period interest rate 1o
represent the opportunity cost of the money ued up in inventory; but it may make sense to use higher values
to penalize inventory that canses long, uncompetitive cycle times.
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X« = amount of product { produced in period ¢
Sy = amount of product i sold in period ¢
I,, = inventory of product 7 at end of period ¢ (J;; is given as data)

Again, X,,, S,,. and [, are decision variables, while the other symbols are constants
representing input data. We can give a linear program formulation of the preblem to

maximize net profit minus inventory carrying cost subject to upper and lower bounds on
sales and capacity constraints as

1 m
Maximize % > 7S —hy (16.28)
=1 =1
Subject to:
d, < Su < du for all i, ¢ (16.29)
Y a, Xy < e for all j, f (16.30)
=1
Li=1Iy +Xoy— S, forallit (16.31)
X, Sitn It 2 0 for all i, 1 (16.32)

In comparison to the previous single-product model, we have adjusted constraints
(16.29) to inctude lower, as well as upper, bounds on sales. For instance, the firm may
have long-term contracts that obligate it to produce certain minimum amounts of certain
products. Conversely, the market for some products may be limited. To maximize profit,
the computer has incentive to set production so that all these constraints will be tight at
their upper limits. However, this may not be possible due to capacity constraints (16.30).
Notice that unlike in ihe previous formulation, we now have capacity constraints for
each workstation in each period. By neting which of these constraints are tight, we can
jdentify those resourccs that limit production, Constraints (16.31) are the multiproduct
version of the balance equations, and constraints (16.32) are the usual nonnegativity
constraints.

We can use LP (16.28)—(16.32) to obtain several pieces of information, including

1. Demand feasibility. We can determine whether a set of demands is
capacity-feasible. 1f the constraint S;; < d;; is tight, then the upper bound on
demand d;, is feasible. If not, then it is capacity-infeasible. If demands given by
the lower bounds on demand d,, are capacity-infeasibie, then the computer
program will return a “could not find a feasible solution” message and the user
must make changes (e.g., reduce demands or increase capacity) in order to get a
solution.

2. Bottleneck locations. Constraints (16.30) restrict production on each
workstation in each period. By noting which of these constraints are binding,
we can determine which workstations limit capacity in which periods. A
workstation that is consistently binding in many periods is a clear bottleneck
and requires close management attention.

3. Product mix. 1f we are unable, for capacity reasons, to attain all the upper
bounds on demand, then the computer will reduce sales below their maximum
for some products. It will try to maximize revenue by producing those products
with high net profit, but because of the capacity constraints, this is not a simple
matter, as we will see in the following example.
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16.3.2 A Simple Example

Let us consider a simple product mix example that shows why one needs a formal
optimization method instead of a simpler ad hoc approach for these problems. We
simplify matiers by assuming a planning horizon of only one period. While this is
certainly not a realistic assumption in general, in situations where we know in advance
that we will never carry inventory from one period to the next, selving separate one-period
problems for each period will yield the optimal solution. For example, if demands and
cost coefficients are constant from period to period, then there is no incentive to build
up inventory and therefore this will be the case.

Consider a situation in which a firm produces two products, which we will cail
products 1 and 2. Table 16.1 gives descriptive data for these two products. In addition
to the direct raw material costs associated with each preduct, we assume a $5,000 per
week fixed cost for labor and capital. Furthermore, there are 2,400 minutes (five days
per week, eight hours per day) of time available on workstations A to D. We assume that
all these data are identical from week to week. Therefore, there is no reason to build
inventory in one week to sell in a subsequent week. (If we can meet maximum demand
this week with this week’s production, then the same thing is possible next week.} Thus,
we can restrict our attention to a single week, and the ondy issue is the appropriate amount
of each product to produce,

A Cost Approach.  Let us begin by Jooking at this problem from a simple cost stand-
point. Net profit per unit of product 1 sold is $45 ($90 — 45), while net profit per unit
of product 2 sold is $60 ($100 — 40). This would seem to indicate that we should em-
phasize production of product 2. Ideally, we would like to produce 50 units of product
2 to meet maximum demand, but we must check the capacity of the four workstations
to make sure this is possible. Since workstation B requires the most time to make a unit
of product 2 (30 minutes) among the four workstations, this is the potential consiraint.
Producing 50 units of product 2 on workstation B will require

30 minutes per unit x 50 units = 1,500 minutes

This is less than the available 2,400 minutes on workstation B, so producing 50 units of
product 2 is feasible.

Now we need to determine how many units of product 1 we can produce with the
leftover capacity. The unused time on workstations A to D after subtracting the time o

TABLE 16.1 Input Data for Single-Period

AP Example
Product 1 2
Selling price $90 | $100
Raw material cost $45 | 340
Maximurm weekly sales 100 50
Minutes per unit on workstation A 15 10
Minutes per unit on workstation B 15 30
Minutes per unit on workstation C 15 5
Minutes per unit on workstation D ] 15 5




Chapter 16 Aggregate and Workforce Planning 549

make 50 units of product 2 we compute as
2,400 — 10(50) = 1,900 minutes on workstation A
2,400 — 30(50) = 900 minutes on workstation B
2,400 — 5(50} = 2,150 minutes on workstation C
2,400 — 5050} = 2,150 minutes on workstation D

Since one unit of product 1 requires 15 minutes of time on each of the four workstations,
we can compute the maximum possible production of product 1 at each workstation by
dividing the unused time by 15. Since workstatior B has the least remaining time, it is
the potential bottleneck. The maximum production of product 1 on workstation B (after
subtracting the time to produce 50 units of product 2) is
900
5~
Thus, even though we can sell 100 units of product 1, we only have capacity for 60.
The weekly profit from making 60 units of product 1 and 50 units of product 2 is

$45 x 60 + $60 x 50 — $5,000 = $700
Is this the best we can do?

A Bottleneck Approach.  The preceding analysis is entirely premised on costs and
considers capacity only as an afterthought. A better method might be to look at cost
and capacity, by computing a ratio representing profit per minute of bottleneck time used
for each product. This requires that we first identify the bottleneck, which we do by
computing the minutes required on each workstation to satisfy maximum demand and
seeing which machine is most overloaded.” This yields

15¢100} + 10(50) = 2,000 minutes on workstation A
15(100} + 30(50) = 3,000 minutes on workstation B
15(100) + 5(50) = 1,750 minutes on workstation C
15(100) + 5(50) = 1,750 minutes on workstation D

Only workstation B requires more than the available 2,400 minutes, so we designate
it the bottleneck. Hence, we would like to make the most profitable use of our time on
workstation B. To determine which of the two products does this, we compute the ratio
of net profit 1o minutes on workstation B as

4
Eachs $3 per minute spent processing product

15
$60 . :
0 = $2 per minute spent processing product 2

This calculation indicates the reverse of our previous cost analysis. Each minute
spent processing product 1 on workstation B nets us $3, as opposed to only $2 per
minute spent on product 2. Therefore, we should emphasize production of product 1,
not product 2. If we produce 100 units of product 1 (the maximum amount allowed by
the demand constraint), then since all workstations require 15 min per unit of one, the
unused time on each worksiation is

2,400 — 15(100) = 900 minutes

IThe alert reader should be suspicious al this point, since we know that the identity of the “bottleneck™
can depend on the preduct mix in a multiproduct case.
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Then since workstation B is the slowest operation for producing product 2, this is what
limits the amount we can produce. Each unit of product 2 requires 30 minutes on B;
thus, we can produce
900
30
units of product 2. The net profit from producing 100 units of product 1 and 30 units of
product 2 1s

30

$45 % 100 + $60 x 30 — $5,000 = $1,300

This is clearly better than the $700 we got from using our original analysis and, it turns
ott, is the best we can do. But will this method always work?

A Linear Programming Approach.  To answer the guestion of whether the previous
“hottleneck ratio” method will always determine the optimal product mix, we consider
a slightly modified version of the previous example, with data shown in Table 16.2. The
only changes in these data relative to the previous example are that the processing time of
product 2 on workstation B has been increased from 30 to 35 minutes and the processing
times for products 1 and 2 on workstation D have been increased from 15 and Sto25
and 14, respectively.

To execute our ratio-based approach on this modified problem, we first check for the
boitleneck by computing the minutes required on each workstation to meet maximum
demand levels:

15100} + 10(50) = 2,000 minutes on workstation A

15(100) 4 35(50) = 3,250 minutes on workstation B
15{100) + 5(50% = 1,750 minutes on workstation C
25¢(100) + 14(50) = 3,200 minutes vn workstation D

Workstation B is still the most heavily loaded resource, but now workstation D also
exceeds the available 2,400 minutes,

If we designate workstation B as the bottleneck, then the ratio of net profit to minute
of time on the bottleneck is

5 .
$]4—5 = $3.00 per minute spent processing product 1
360 . .
35 = $1.71 per minute spent processing product 2

TagLE 16.2 Input Dats for Modified
Single-Period AP Example

Product 1 2
Selling price $60 | $100
Raw material cost 345 $40
Maximum weekly sales 100 50
Minutes per unit on workstation A 15 10
Minutes per unit on workstation B 5 35
Minutes per unit on workstation € 15 5
Minutes per unit on workstation D 25 14
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which, as before, indicates that we shouwld produce as much product 1 as possible.
However, now it is workstation D that is slowest for product 1. The maximum amount
that can be produced on D in 2,400 minutes is

2,400 %6
25
Since 96 units of product 1 use up all available time on workstation D, we cannot produce
any product 2. The net profit from this mix, therefore, is

$45 x 96 — $5,000 = —$680

This doesn’t look very good—we are losing money. Moreover, while we used work-
station B as our bottleneck for the purpose of computing our ratios, it was workstation
D that determined how much product we could produce. Therefore, perhaps we should
have designated workstation D as our bottleneck. If we do this, the ratio of net profit to
minute of time on the bottleneck is

345

a5 = $1.80 per minute spent processing product 1
$60 . .

7= $4.29 per minute spent processing product 2

This indicates that it is more profitable to emphasize production of product 2. Since
workstation B is slowest for product 2, we check its capacity to see how much product
2 we ¢an produce, and we find

2,400
——— = 68.57
33 68.5

Since this is greater than maximum demand, we should produce the maximum amount
of product 2, which is 50 units. Now we compute the unused time on each machine as

2,400 — 10¢50) = 1,900 minutes on workstation A

2,400 — 35(50) = 650 minutes on workstation B
2,400 — 5(50) = 2,150 minutes on workstation C

2,400 — 14(50) = 1,700 minutes on workstation D

Dividing the unused time by the minutes required to produce one unit of product 1 on
each workstation gives us the maximum production of product 1 on each to be

LTQSQE = 126.67 units on workstation A
% = 43.33 units on workstation B
2;11559 = 143,33 units on workstation C

ll;—sqg = 68 upits on workstation D

Thus, workstation B limits production of product 1 to 43 units, so total net profit for this
solution is

$45 x 43 4 $60 x 50 — $5,000 = —-$65
This is better, but we are still losing money. Is this the best we can do?

Finally, let’s bring out our big gun (not really that big, since it is included in pop-
ular spreadsheet programs) and solve the problem with a linear programming package.
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Letting X (X) represent the quantity of product 1 (2) produced, we formulate a linear

programming model to maximize profit subject to the demand and capacity constraints
as

Maximize 45X, + 60X, — 5,000 (16.33)
Subject to:

X < 100 (16.34)

Xy =50 (16.35)

15X 4+ 10X, = 2,400 {16.36)

15X, + 35X, <2,400 (16.37)

15X, + 5X; < 2,400 (16.38)

25X, + 14Xx5 = 2,400 (16.39)

Problem (16,33}-16.39) is trivial for any LP package. Ours (Excel) reports the
solution to this problem to be

Optimal objective = $557.94
Xr="7579
X3 =36.09

Even if we round this solution down (which will certainly still be capacity-feasible, since
we are reducing production amounts) to integer values

X;=175
X3 =736
we get an objective of

$45 x 75 4 $60 x 36 — $5,000 = $535

So making as much product 1 as possible and making as much product 2 as possible
both result in negative profit. But making a mix of the two products generates positive
profitc!

The moral of this exercise is that even simple product mix problems can be subtle.
No trick that chooses a dominant product or identifies the bottleneck before knowing
the product mix can find the optimal solution in general. While such tricks can work for
specific problems, they can resuit in extremely bad solutions in others. The only method
guarantead to solve these problems optimally is an exact algorithm such as those used in
linear programming packages. Given the speed, power, and user-friendliness of modern
LP packages, one should have a very goed reason to forsake LP for an approximate
method.

16.3.3 Extensions to the Basic Model

A host of variations on the basic problem given in formulation (16.28)—(16.32) are
possible. We discuss a few of these next; the reader is asked to think of others in the
problems at chapter’s end.

Other Resource Constraints. Formulation (16.28)—(16.32) contains capacity con-
straints for the workstations, but not for other resources, such as people, raw materials,
and transport devices. In some systems, these may be important determinants of overall
capacity and therefore should be included in the AP module.
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Generically, if we let

b, = units of resource j required per unit of product
k&, = number of units of resource j available in period ¢
X;; = amount of product i produced in pericd ¢

we can express the capacity constraint on resource j in period 7 as
3 by Xy <k (16.40)
=1

Notice that b;; and k,, are the nonworkstation analogs to «;; and ¢, in formulation
(16.28)16.32).

As a specific example, suppose an inspector must check products 1, 2, and 3, which
require 1, 2, and 1.5 hours, respectively, per unit to inspect. If the inspector is available
a total of 160 hours per month, then the constraint on this persen’s time in month ¢ can
be represented as

Xy +2X2r + 1-5X3r = 160

If this constraint is binding in the optimal solution, it means that inspector time is a
bottleneck and perhaps something should be reorganized to remove this bottleneck. (The
plant could provide help for the inspector, simplify the inspection procedure to speed
it up, or use quality-at-the-source inspections by the workstation operators to eliminate
the need for the extra inspection step.)

As a second example, suppose a firm makes four different models of circuit board,
all of which reguire one unit of a particular component. The component contains leading-
edge technology and is in short supply. If k, represents the total number of these compo-
nents that can be made available in period ¢, then the constraint represented by component
availability in each period  can be expressed as

Xy +Xy+Xu+ X 2k

Many other resource constraints can be represented in analogous fashion.

Utilization Matching.  As our discussion so far shows, it is straightforward to model
capacity constraints in LP formulations of AP problems. However, we must be careful
about how we use these constraints in actual practice, for two reasons.

1. Low-level complexity. An AP module will necessarily gloss over details that
can cause inefficiency in the short term. For instance, in the product mix
exampie of the previous section, we assumed that it was possible to run the four
machines 2,400 minutes per week. However, from our factory physics
discussions of Purt 11, we know that it is virtually impossible to avoid some idle
time on machines. Any source of randomness {machine fatlures, setups, errors
in the scheduling process, etc.) can diminish utilization. While we cannot
incorporate these directly in the AP model, we can account for their aggregate
effect on utilization.

2. Production control decisions. As we noted in Chapter 13, it may be
economically attractive to set the production quota betow full average capacity,
in order to achieve predictable customer service without excessive overtime
costs. If the quota-setting module indicates that we should run at less than fuil
utilization, we should include this fact in the aggregate planning module in
order to maintain consistency.
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These considerations may make it attractive to plan for production levels below
full capacity. Although the decision of how close to capacity to run can be tricky,
the mechanics of reducing capacity in the AP model are simple. If the ¢;, parameters
represent practical estimates of realistic full capacity of workstation j inperiod ¢, adjusted
for setups, worker breaks, machine failures, and other reasonable detractors, then we can
simply deflate capacity by multipiying these by a constant factor. For instance, if either
historical experience or the quote-setting module indicates that it is reasonable to run at a
fraction ¢ of full capacity, then we can replace constraints (16.30) in LP (16.28)416.32)
by

Za;J,X,-; < gc, forall j,t
=i

The result will be that a binding capacity constraint will occur whenever a worksta-
tion is loaded to 1004 percent of capacity in a period.

Backorders. fn LP (16.28)-(16.32), we forced inventory to remain positive at all
times. Implicitly, we were assuming that demands had to be met from inventory or lost;
no backlogging of unmet demand was allowed. However, in many realistic situations,
demand is not lost when not met on time, Customers expect to receive their orders
even if they are late. Moreover, it is important to remember that aggregate planning is a
long-term planning function. Just because the model says a particular order will be late,
that does not mean that ¢his must be so in practice. If the model predicts that an order
due nine months from now will be backlogged, there may be ample time to renegotiate
the due date. For that matter, the demand tmay really be only a forecast, to which a
firm customer due date has not yet been attached. With this in mind, it makes sense to
think of the aggregate planning module as a tool for reconciling projected demands with
available capacity. By using it to identify problems that are far in the future, we can
address them while there is still time to do something about them.
We can easily modify LP (16.28)—(16.32) to permit backordering as follows:

i

Maximize 3 riSy — b7 =7 (16.41)
=1
Subject to:
d, < Sy <dy for all i, ¢ (16.42)
Za,-jx,-, < ¢ for all j, ¢ (16.43)
i=1
fip =TIy + X;— 8 foralli : (16.44)
Ly =L -1, foralli,¢ (16.45)
Xi, S, 1T, 17 =0 foralli,: (16.46)

it

The main change was to redefine the inventory variable /y; as the difference TR i
where 1; represents the inventory of product i carried from period t tot + 1 and I
represents the number of backorders carried from peried ¢ to £ +1. Both I and I must
be nonnegative. However, /,; can be either positive or negative, and so we refer to it as
the inventory position of product i in period f. A positive inventory position indicates
on-hand inventory, while a negative inventory position indicates outstanding backorders.
The coefficient 7, is the backorder analog to the holding cost &, and represents the penalty
to carry one unit of product i on backorder for one period of time. Because both [



Chapter 16 Aggregate and Worlforce Planning 555

and 7,7 appear in the objective with ncgative coefficients, the LP solver will never make
both of them positive for the same period. This simply means that we won't both carry
inventory and incur a backorder penalty in the same period.

In terms of modeling, the most troublesome parameters in this formulation are the
backorder penalty coefficients 7, . What is the cost of being late by one period on one unit
of product {? For that matter, why should the lateness penalty be linear in the number
of periods late or the number of units that are late? Clearly, asking someone in the
organization for these numbers is out of the question. Therefore, one should view this
type of model as a tool for generating various long-term production plans. By increasing
or decteasing the 7; coefficients relative to the h; coefficients, the analyst can increase or
decrease the relative penaity associated with backlogging. High mr; values tend to force
the model to build up inventory to meet surges in demand, while low 7; values tend to
allow the model to be late on satisfying some demands tl.at occur during peak periods.
By generating both types of plans, the user can get an idea of what options are feasible
and select among them.

To accomplish this, we need not get overly fine with the selection of cost coefficients,
We could set them with the simple equations

h, =ap, (16.47)
=8 (16.48)

where o represents the one-period interest rate, suitably inflated to penalize uncompet-
itive cycle times caused by excess inventory, and p; represents the raw materials cost of
one unit of product i, so that ap, represents the interest lost on the money tied up by hold-
ing one unit of product i in inventory. Analogously, S represents a (somewhat artificial)
cost per period of delay on any product. The assumption here is that the true cost of being
late (expediting costs, lost customer goodwill, lost future orders, etc,) is independent of
the cost or price of the product. If Equations (16.47) and (16.48) are valid, then the user
can fix o and generate many different production plans by varying the single parameter B

Overtime.  The previous representations of capacity assume each workstation is avail-
able a fixed amount of time in each period. Of course, in many systems there is the pos-
sibility of increasing the time via the use of overtime. Although we will treat overtime
in greater detail in our upcoming discussion of workforce planning, it makes sense to
note quickly that it is a simple matter to represent the option of avertime in a product
mix model, even when labor is not being considered explicitly.

To do this, let

i } — cost of one hour of overtime at workstation j; a cost parameter
0, = overtime at workstation j in period 7 in hours; a decision variable

We can modify LP (16.41)-{16.46) to allow overtime at each workstation as follows:

i "
Maximize 3 (S ~ bl =il — D 10} (16.49)
=1 i=1
Subject to:
d, < Si < dy foralli,r  (16.50)
"
> aXy S cjp+ O forall j,  (16.51)

i=l1

Ly =L+ X — i foralli,t  (16.52)
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Ly=1I17-1; foralli,r  (16.53)
X, 5, 17.170;,>0 foralli, j,t (16.54)
The two changes we have made to LP (16.41)+{16.46) were to
1, Subtract the cost of overtime at stations 1, ..., n, which is Z§=1 e 10,

from the objective function.

2. Add the hours of overtime scheduled at station j in peried ¢, denoted by Oy, to
the capacity of this resource ¢;, in constraints (16.51).

It is natural to include both backlogging and overtime in the same model, since these
are both ways of addressing capacity problems. In LP (16.49)—-(16.54), the computer
has the opticn of being late in meeting demand (backlogging) or increasing capacity
via overtime. The specific combination it chooses depends on the relative cost of back-
ordering (mr;} and overtime (/7). By varying these cost coefficients, the user can generate
a range of production plans.

Yield Loss. In systems where product is scrapped at various points in the line due
to quality problems, we must release extra material info the system to compensate for
these losses. The result is that workstations upstream from points of yield loss are more
heavily utilized than if there were no yield loss (because they must produce the extra
material that will ultimately be scrapped}. Therefore, to assess accurately the feasibility
of a particular demand profile relative to capacity, we must consider yield loss in the
aggregaie planning module in systems where scrap is an issue.

We illustrate the basic effect of yield loss in Figure 16.9. In this simple line, a, 8,
and v represent the fraction of product that is lost to scrap at workstations A, B, and C,
respectively. If we require d units of product to come out of station C, then, on average,
we will have to release 4 /(1 — y) units into station C. To get /{1 — ) units out of station
B, we will have to release 4 /[{1 — £){1 — )] units into B on average. Finally, to get the
needed d/[(1 — )1 — y)] out of B, we will have to release d/[(1 —a)(1 — B)(1 —¥)]
units into A.

We can generalize the specific example of Figure 16.9 by defining

y;; = cumulative yield from station j onward (including station j) for product i

If we want to get 4 units of product i out of the end of the line on average, then we
must release

4 (16.55)
Yij
units of { into station j. These values can easily be computed in the manner used for
the example in Figure 16.9 and updated in a spreadsheet or database as a function of the
estimated yield loss at each station.
Using Equation (16.55) to adjust the production amounts X;, in the manner illus-
trated in Figure 16.9, we can modify the LP formulation (16,28)(16.32) to consider

N ll(:tr B llﬁr c l1'}«

a B ¥

»
g




Chapter 16 Aggregate and Worljorce Plunning 557

yield loss as follows:

Maximize Z Sy — iy, (16.56}
1=l
Subject to:
d, < S <dy for all i, ¢ (16.57)
m
a;; X!I .
Z <y forall j, 1 (16.58)
i1 ¥ij
i
Li=1I._ +X,~8, foralli: (16.59)
XS b =0 forall i, t (16.60)

As one would expect, the net effect of this change is to reduce the effective capacity
of workstations, particularly those at the beginning of the line. By altering the y;; values
(or better yet, the individual yields that make up the y,, values), the planner can get a
feel for the sensitivity of the system to improvements in yields. Again as one would
intuitively expect, the impact of reducing the scrap rate toward the end of the line is
frequently much larger than that of reducing scrap toward the beginning of the line.
Obviousty, scrapping product late in the process is very costly and should be avaided
wherever possible. If better process control and quality assurance in the front of the line
can teduce scrap later, this is probably a sound policy. An aggregate planning module
like that given in LP {16.56)}{16.60) is one way to get a sense of the economic and
Togistic impact of such a policy.

16.4 Workforce

16.4.1 An LP Model

Planning

In systems where the workload is subject to variation, due to either a changing workforce
size or overtime load, it may make sense to consider the aggregate ptanning (AP) and
workforce planning (WP) modules in tandem. Questions of how and when to resize the
labor pool or whether to use overtime instead of workforce additions can be posed in the
context of a lingar programming formulation to support both modules.

To illustrate how an LP model can help address the workforce-resizing and overtime
allocation questions, we will consider a simple single-product model. In systerns where
product routings and processing times are either almost identical, so that products can
be aggregated into a single product, or entirely separate, so that routings can be analyzed
separately, the single-product model can be reasonable. In a system where bottleneck
identification is complicated by different processing times and interconnected routings, a
planner would most likely need an explicit multiproduct model. This involves a straight-
forward integration of a product mix model, like those we discussed earlier, with a
workforce-planning model tike that presented next.

We introduce the following notation, paralieling that which we have used up to now,
with a few additions 1o address the workforce issues.

j = anindex of workstation, j =1, ..., n, s0 n represents total
number of workstations

t = anindex of period, f = 1,.... 7, 5o f represents planning horizon
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d; = maximum demand in period ¢
d, = minimum sales allowed in period ¢
a; = time required on workstation j to produce one unit of product
b = number of worker-hours required to produce one unit of product
¢ = capacity of workstation j in period ¢
r = net profit per unit of product sold
h = cost to hold one unit of product for one period
{ = cost of regular time in dollars per worker-hour
I' = cost of overtime in dollars per worker-hour
e = ¢ost to increase workforce by one worker-hour per period
£ = cost to decrease workfurce by one worker-hour per peried
X, = amount produced in peniod ¢

=
I

amount sold in peried ¢
I, = inventory at end of ¢ (Jy is given as data)
W, = workforce in period ¢ in worker-hours of regular time
(W is given as data)
H, = increase (hires) in workforce from period f — 1 1o 1 in worker-hours
F, = decrease (fires) in workforce from period r — 1 to ¢ in worker-hours
O, = overtime in period ¢ in hours

We now have several new parameters and decision variables for representing the
workforce considerations. First, we need b, the labor content of one unit of product, in
order to relate workforce requirements to production needs. Once the mode! has used
this parameter to determine the number of labor hours required in a given month, it has
two options for meeting this requirement. Either it can schedule overtime, using the
variable O, and incurring cost at rate I/, or it can resize the workforce, using variables
H, and F, and incurring a cost of e (') for every worker added (laid off).

To model this planning problem as an LP, we will need to make the assumption
that the cost of worker additions or deletions is linear in the number of workers added or
deleted; that is, it costs twice as much to add (delete) two workers as it does to add (delete)
one. Here we are assuming that e is an estimate of the hiring, training, outfitting, and
lost productivity costs associated with bringing on a new worker. Similarly, ¢ represents
the severance pay, unemployment costs, and so on associated with letting a worker go.

Of course, in reality, these workforce-related costs may not be linear. The training
cost per worker may be less for a group than for an individual, since a single instructor
can train many workers for roughly the same cost as a single one. On the other hand,
the plant disruption and productivity falloff from introducing many new workers may
be much more severe than those from introducing a single worker. Although one can
use mote sophisticated models to consider such sources of nonlinearity, we will stick
with an LP model, keeping in mind that we are capturing general effects rather than
elaborate details, Given that the AP and WP modules are used for long-term general
planning purposes and rely on speculative forecasted data (e.g., of future demand), this
is probably a reasonable choice for most applications.

We can write the LP formulation of the problem to maximize net profit, including
labor, overtime, holding, and hiring/firing costs, subject to constraints on sales and
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capacity, as

f
Maximize Y {rS, — hl, —IW, —I'0, — eH, — ¢'F;) (16.61)
1=1

Subject to:
d, <8 <4 forallt (16.62)
a; X, £cy forall j, ¢ (16.63)
L=1.,+X -5 forallt  (16.64)
We=W,_+H - F forallt (16.65)
bX, < W, + 0, forallt (16.66)
X.5,1,0, W, H F >0 forallt (16.67)

The objective function in formulation {16.61) computes profit as the difference
between net revenue and inventory carrying costs, wages (regular and overtime), and
workforce increase/decrease costs. Constraints (16.62) are the usual bounds on sales.
Constraints (16.63) are capacity constraints for each workstation. Constraints {16.64)
are the usual inventory balance equations. Constraints (16.65) and (16.66) are new to this
formulation. Constraints (16.65) define the variables W,, ¢t = 1, ..., 1, to represent the
size of the workforce in period ¢ in units of worker-hours. Constraints (16.66) constrain
the worker-hours required to produce X,, given by &X,, to be less than or equal to the sum
of regular time plus overtime, namely, W, + O,. Finally, constraints (16.67) ensure that
production, sales, inventory, overtime, workforce size, and labor increases/decreases
are all nonnegative. The fact that I, > 0 implies no backlogging, but we could eas-
ily modify this model to account for backlogging in a manner like that vsed in LP
{16.41)-(16.46).

16.4.2 A Combined AP/WP Example

To make LP {16.61)(16.67) concrete and to give a flavor for the manner in which
modeling, analysis, and decision making interact, we consider the example presented
in the spreadsheet of Figure 16.10. This represents an AP problem for a single product
with unit net revenue of $1,000 over a 12-month planning horizon. We assume that each
worker works 168 hours per month and that there are 15 workers in the system at the
beginning of the planning horizon. Hence, the total number of labor hours available at
the start of the problem is

Wy == 15 x 168 = 2,520

There is no inventory in the system at the start, so fp = 0.

The cost parameters are estimated as follows. Monthly holding cost is $10 per uni.
Regular time labor (with benefits) costs $35 per hour. Overtime is paid at time-and-a-
half, which is equal o $52.50 per hour. It costs roughly $2,500 to hire and train a new
worker. Since this worker will account for 168 hours per month, the cost in terms of
dollars per worker-hour is

$2,500
~———— == $14.88 = $15 per hour
168 pe
Since this number is only a rough approximation, we will round to aneven $15. Similarly,
we estimate the cost to lay off a worker to be about 31,500, so the cost per hour of
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reduction in the monthly workforce is

$1,500
168

= $8.93 = $9 per hour

Again, we will use the rounded value of $9, since data are rough.
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Notice that the projected demands (d,) in the spreadsheet have a seasonal pattern to
them, building to a peak in months 5 and 6, and tapering off thereafter. We will assume
that backordering is not an option and that demands must be met, so the main issue will
be how to do this.

Let us begin by expressing LP (16.61)-(16.67) in concrete terms for this problem.
Because we are assuming that demands are met, we set S, = d,, which eliminates the
need for separate sales variables §; and sales constraints (16.62). Furthermore, to keep
things simple, we will assume that the only capacity constraints are those posed by labor
(i.e., itrequires 12 hours of labor to produce each unit of product). No other machine or
resource constraints nced be considered. Thus we can omit constraints (16.63). Under
these assumptions, the resulting LP formulation is

Maximize 1.0OOWd, + - +d2) — 1008y + -+ [12)
=35(Wi +-- + W) = 52.5(Ch + -+ On2)

—15(H + -+ Ha) = 9(F +---+ Fi2) (16.68)
Subject 10
=~ X, =-d (16.69)
b-h=-X=-d; (16.70}
h—I—Xy=—d (16.71)
Ii— K~ Xa=—ds (16.72)
Is — T4 — X5 = —djs (16.73)
Is — Is — Xo = —ds (16.74)
-1~ Xy=—d; (16.75)
Lo— 17— X5 = —dy (16.76)
fo—Is — Xog=—dy (16.77
Lo~ Ig— Xy = —dyp (16.78)
Iy = he—Xn=—du (16.79)
Io—In—Xpz=—dnz (16.80)
W, — H + F, = 2,520 (16.81)
Wo—W—Hh+F,=0 (16.82)
Way— Wy Hy+ F3=0 (16.83)
Wi—Ws— M+ Fy=0 {16.84)
Ws— Wy — Hs+ Fy=0 16.85
We— Ws —~ Hg+ Fg=0 (16.86)
W,—Weg—-H:+ F=0 (16.87)
Wy~ Wy— Hg+ F3 =0 (16.88)
We—We—He+ Fo=0 (16.89)
Wy~ Wo— Hig+ Fio =0 (16.90)
Wy—Wp—Hp+Fi=0 (16.91)
Wi~ Wy —Hp+ Fa=0 (16.92)
12X, -W— 0120 {16.93)
12X; — W — 020 (16.94)

12X: —W; - 0;<0 {16.95)
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12X4 - Wy — 040 (16.96)

12Xs — Ws — Os< 0 (16.97)

12Xs — Ws — O < 0 (16.98)

12X; — Wy — 07 <0 (16.99)

12Xg — Wy — < 0 (16.100)

12Xg — W5 — 0= 0 (16.101)

12X10 - Wig — 010 < 0 {16.102)

12X —Wp — 050 (16.103)

12X — Wiz — 0250 (16.104)

X L O, W, H,FE>=0 t=1,...12 (16.105)

Objective (16.68) is identical to objective (16.61), except that the §; variables have
been replaced with d; constanis.®? Counstraints (16.69)—€16.80) are the usual balance
constraints. For instance, constraint {16.69) simply states that

{ 1 = IQ + X d 1
That is, inventory at the end of month 1 equals inventory at the end of month 0 (ie.,
the beginning of the problem) plus production during month 1, minus sales {(demand)
in month 1. We have arranged these constraints so that all decision variables are on the
left-hand side of the equality and constants {4, } are on the right-hand side. This is often
a convenient modeling convention, as we will see in our analysis.

Constraints {16.81) to (16.92) are the labor balance equations given in constraints
(16.65) of our general formulation. For instance, constraint (16.81) represents the reja-
tion

Wi=Wy+H —F
so that the workforce at the end of month 1 {in units of worker-hours) is equal to the
workforce at the end of month 0, plus any additions in month 1, minus any subtractions
in month 1.

Constraints {16.93) to {16.104) ensure that the labor content of the production plan
does not exceed available labor, which can include overtime. For instance, constraint
{16.93) can be written as

12X, =W + 0,

In the spreadsheet shown in Figure 16.10, we have entered the decision variables
X,, W,, H,, F,, I,, and O, into cells Bi6:M21. Using these variables and the varions
coefficients from the top of the spreadsheet, we express objective (16.68) as a formula
in cell B24. Notice that this formula reports a value equal to the unit profit times total
demand, or

1,000(200 + 220 + 230 + 300 + 400 + 450 + 320
+ 180 + 170 + 170 + 160 + 180} = $2,980,000

because all other terms in the objective are zero when the decision variables are set at

ZEro,
We enter formulas for the left-hand sides of constraints (16.69) to (16.80) in cells
B27:B38, the left-hand sides of constraints (16.81) to (16.92) in cells B39:B50, and the

8Since the d; values are fixed, the first term in the objective function is not a function of our decision
variables and could be left out without affecting the sclution, We have kept it in so that our model reports a
sensible profit function.
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left-hand sides of constraints (16.93} to (16.104) in cells B51:B62. Notice that many
of these constraints are not satisfied when all decision variables are equal to zerg. This
is bardly surprising, since we cannot expect ta earn revenues from sales of product we
have not made.

A convenient uspect of using a spreadsheet for solving LP models is that it provides
us with a mechanism for playing with the model to gain insight into its behavior. For
instance, in the spreadsheet of Figure 16.11 we try a chase solution where we set
production equal to demand (X, = d;) and leave W, = Wy inevery period. Although this
satisfies the inventory balance constraints in cells B27:B38, and the workforce balance
constraints in ¢ells B39:B50. it violates the labor content constraints in cells B32:B57.
The reason, of course, is that the current workforce is not sufficient to meet demand
without using overtime. We could try adding overtime by adjusting the ), vuriables
in cells B21:M21. However, searching around for an optimal solution can be difficult,
particularly in large models. Therefore, we will let the LP solver in the software do the
work for us.

Using the procedure we described earlier, we specify constraints (16.69) to (16.103)
in our mode] and turp it loose. The result is the spreadsheet in Figure 16.12. Based on
the costs we chose, il lurns out to be optimal not to use any overtime. (Overtime cosis
$52.5 — 35 = 15.50 per hour each month, while hiring a new worker costs only $15
per hour as a one-time cost.) Instead, the model adds 1,114.29 hours to the workforce,
which represents

1,11429
168

new workers, After the peak season of months 4 to 7, the solution calls for a reduction
of 1,474.29 + 120 = 1,594.29 hours, which implies laying off

1,594.29
168
workers. Additionally, the solution involves building in excess of demand in months
1 to 4 and using this inventory o meet peak demand in months 5 to 7. The net profit
resulting from this solution is $1,687.337.14.
From a management standpoint, the planned layoffs in months 8 and 9 might be
a problem. Although we have specified penalties for these layoffs, these penalties are
highly speculative and may not accurately consider the long-term effects of hiring and
firing on worker morale, productivity, and the firm’s ability to recruit good people. Thus,
it probably makes sense to carry our analysis further.
One approach we might consider would be to allow the model to bire but not fire
workers. We can easily do this by eliminating the F, variables or, since this requires
fairly extensive changes in the spreadsheet, specifying additional constraints of the form

F=0 r=1..,12

6.6

=95

Rerunning the model with these additional constraints produces the spreadsheet in Figure
16.13. As we expect, this solution does not include any layoffs. Somewhat surprising,
however, is the fact that it does not involve any new hires either (that is, H; = 0 for
every period). Instead of increasing the workforce size, the medel has chosen to use
overtime in months 3 to 7. Evidently, if we cannot fire workers, it is uneconomical to
hire additional people.

However, when one looks more closely at the solution in Figure 16.13, a problem
becomes evident. Overtime is too high. For instance, month 6 has more hours of
overtime than hours of regular time! This means that our workforce of 15 people has
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FiGure 16.11
Infeasible “chase” solution
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2,880/15 = 192 hours of overtime in the month, or about 48 hours per week per worker.
This is obviously excessive.

One way to eliminate this overtime problem is to add some more constraints. For
instance, we might specify that overtime is not o exceed 20 percent of regular time.
This would correspond to the entire workforce working an average of ane full day of
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overtime per week in addition to the normal five-day workweek. We could do this by

adding constraints of the form

0, < 0.2W,

t=1,...,12

(16.106)

Doing this to the spreadsheet of Figure 16.13 and resolving results in the spreadsheet
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FIGURE 16.13
Optimal solution when Fy =0
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shown in Figure 16.14. The overtime limits have forced the model to resort to hiring.
Since layoffs are still not allowed, the model hires only 508.57 hours worth of workers,
or

508.57

168 3
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new workers, as opposed to the 6.6 workers hired in the original solution in Figure 16.12.
To attain the necessary production, the solution uses overtime in months 1 to 7. Notice
that the amount of overtime used in these months is exactly 20 percent of regular time
waork hours, that is,

3,028.57 x 0.2 = 605.71
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What this means is that new constraints (16.106) are binding for periods 1 to 7, which
we would be told explicitly if we printed out the sensitivity analysis reports generated
by the LP solver. This implies that if it is possible to work more overtime in any of these
months, we can improve the solution.

Notice that the net profit in the model of the spreadsheet shown in Figure 16.14
is $1,467,871.43, which is a 13 percent decrease over the original optimal solution of
$1,687,337.14 in Figure 16.12. At first glance, it 'may appear that the policies of no
layoffs and limits on overtime are expensive. On the other hand, it may really be telling
us that our original estimates of the costs of hiring and firing were too low. If we
were to increase these costs to represent, for example, long-term distuptions caused by
labor changes, the optimal solution might be very much like the one arrived at in Fig-
ure 16.14.

16.4.3 Modeling Insights

In addition to providing a detailed example of a workforce formulation in LP (16.61)
(16.67), we hope that our discussion has helped the reader appreciate the following
aspects of using an optimization model as the basis for an AP or WP module.

1. Multiple modeling approaches. There are often many ways to model a given
problem, none of which is “correct” in any absolute sense. The key is to use cost
coefficients and constraints to represent the main issues in a sensible way. In this example,
we could have generated solutions without fayoffs by either increasing the layoff penalty
or placing constraints on the layoffs. Both approaches would achieve the same qualitative
conclusions.

2. Iterative model development. Modeling and analysis almost never proceed in
an ideal fashion in which the model is formulated, solved, and interpreted in a single
pass. Often the solution from one version of the model suggests an alternate model.
For instance, we had no way of knowing that eliminating layoffs would cause excessive
overtime in the solution. We didn't know we would need constraints on the level of
overtime until we saw the spreadsheet output of Figure 16.13.

16.5 Conclusions

In this chapter, we have given an overview of the issues involved in aggregate and
workforce planning. A key observation behind our approach is that, because the ag-
gregate planning and workforce planning modules use long time horizons, precise data
and intricate modeling detail are impractical or impossible. We must recognize that
the production or workforce plans that these modules generate will be adjusted as time
evolves. The lower levels in the PPC hierarchy must handle the nuts-and-bolts challenge
of converting the plans to action. The keys to a good AP module are to keep the focus -
on long-term planning {i.e., avoiding putting too many short-term control details in the
model) and to provide links for consistency with other levels in the hierarchy. Some
of the issues related to consisiency were discussed in Chapter 13. Here, we close with
some general observations about the aggregate and workforce planning functions:

1. No single AP or WP module is right for every situation. As the examples in this
chapter show, aggregate and workforce planning can incorporate many different decision
problems. A good AP or WP module is one that is tailored to address the specific issues
faced by the firm,
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2. Simplicity promotes understanding. Although it is desirable to address different
issues in the AP/WP medule. it is even more important to keep the model understandable,
In general, these modules are used to generate candidate production and workforce plans,
which witl be examined, combined, and altered manually before being published as “The
Plan.” To generate a spectrum of plans {and explain them to others), the user must be
able to trace changes in the model to changes in the plan. Because of this, it makes sense
to start with as simple a formulation as possible. Additional detail (e.g., constraints) can
be added later.

3. Linear programming is a useful AP/WP 1ool. The long planning horizon used for
aggregate and workforce planning justifies ignoring many production details; therefore,
capacity checks, sales restrictions, and inventory balances can be expressed as linear
constraints. As long as we are willing to approximate actual costs with linear functions,
an LP solver is a very efficient method for solving many problems related to the AP and
WP modules. Because we are working with speculative long-range data, it generally
does not make sense to use anything more sophisticated than LP (e.g., nonlinear or
integer programming) in most aggregate and workforce planning situations.

4. Robustness matiers more than precision. No matter how accurate the data and
how sophisticated the model, the plan generated by the AP or WP module wiil never be
followed exactly. The actual production sequence will be affected by unforeseen events
that could not possibly have been factored into the module. This means that the mark
of a good long-range production plan is that it enables us to do a reasonably good job
even in the face of such contingencies. To find such a plan, the user of the AP module
must be able 1o examine the consequences of various scenarios. This is another reason
to keep the model reasonably simple.

APPENDIX I6A
LINEAR PROGRAMMING

Linear programming is a powerful mathematical tocl for solving constrained optimization prob-
lems. The name derives from the fact that LP was first applied to find optimal schedules or
“programs” of resource allocation. Hence, although LP generally does involve using a computer
program. it does not entail programming on the part of the user in the sense of writing code.

In this appendix, we provide enough background to give the user of an LP package a basic
idea of what the software is doing. Readers interested in more details should consult one of the
many goud texts on the subject (e.g., Eppen and Gould 1988 for an application-oriented overview,
Murty 1983 for more technical coverage).

Formulation

The first step in using linear programming is 1o formulate a practical problem in mathematical
terms. There are three basic choices we must make to do this:

1. Decision variables are quantities under our comrol. Typical examples for aggregate
planning and workforce planning applications of LP are production quantities, nurmber of
workers to hire, and levels of inventory to hold.

2. Objective function is what we want to maximize or minifuze. In most APAWP
applications, this is typically either to maximize profit or minimize cost. Beyond simply
stating the objective, however, we must specify it in terms of the decision variables we
have defined.
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3. Constraints are restrictions on our choices of the decision variables. Typical examples for
AP/WP applications include capacity constraints, raw materials limitations, restrictions on
how fast we can add workers due to limitations on iraining capacity, and restrictions on

physical flow (e.g., inventory levels as a direct result of how much we produce/procure and
how much we sell).

When one is formulating an LP, it is often useful to try to specify the necessary inputs in the
order in which they are listed. However, in realistic problems, one virtually never gets the “right”
formulation in a single pass. The example in Section 16.4.2 illustrates some of the changes that
may be required as a model evolves.

To describe the process of [ormulating an LP, let us consider the problemn presented in Table
16.2. We begin by selecting decision variables. Since there are only two products and because
demand and capacity are assumed stationary over time, the only decisions to make concern how
much of each product to produce per week. Thus, we let X| and X, represent the weekly production
quantities of products 1 and 2, respectively.

Next, we choose to maximize profit as our cbjective function. Since product 1 sells for $90
but costs $45 in raw material, its net profit is $45 per unit.’ Similarly, product 2 selis for $100 but
costs $40 in raw material, so its net vnit profit is $60. Thus, weekly profit will be

45X, 4+ 60X, — weekly labor costs — weekly overhead costs

But since we assurne that labor and overhead costs are not affected by the choice of X, and X,
we can use the following as our objective function for the LP model:

Maximize 45X, + 60X,

Finally, we need to specify constraints. If we could produce as much of products 1 and 2 as
we wanted, we could drive the above objective function, and hence weekly profit, to infinity. This
is not possible because of limitations on demand and capacity.

The demand constraints are easy. Since we can sell at most 100 units per week of product 1
and 50 units per week of product 2, our decision variables X; and X; must satisfy

X, =100
X, =50

The capacity constraints are a little more work. Since there are four machines, which run at
most 2,400 minutes per week, we must ensure that our production quantities do not violate this
constraint on each machine. Consider workstation A, Each unit of product | we produce requires
15 minutes on this workstation, while each unit of product 2 we produce reguires 10 minutes.
Hence, the total number of minutes of time required on workstation A to produce X units of
product 1 and X units of product 2 is'®

15X, + 10X,
so the capacity constraint for workstation A is
15X, + 10X, < 2,400

Proceeding analogously for workstations B, C, and D, we can write the other capacity constraints
as follows:

15X, +35X; < 2,400 workstation B

15X, +5X; <2,400  workstation C
25X, + 14X, = 2,400 workstation D

“Note that we are neglecting labor and overhead costs in our estimates of unit profit. This is reasonable if
these costs are not affected by the choice of production guantities, that is, if we won’t change the size of the
workforce or the number of machines in the shop.

10N ote that this constraint does not address such detailed considerations as setup times that depend on the
sequence of products run on workstation A or whether full utilization of workstation A is possible given the
WIP in the system. But as we discussed in Chapter 13, these issucs arc addressed at a lower level in the
production planning and control hierarchy (e.g., in the sequencing and scheduling module).
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We have now completely defined the following LP mode! of our optimization problem:

Maximize 45X, + 60X, (16,107
Subject to

X, =100 (16.108)

X2 =50 (16.109)

15X, + 10X, < 2,400 {16.110)

15X, +35X; =2,400 (16.111)

15X, +5X, < 2,400 (16.112)

25X, + 14X, < 2,400 (16.113)

Some LP packages allow the user to enter the preblem in a form almeost identical to that shown
in formulation (16.107)16.113}. Spreadsheet programs generally require the decision variables
to be entered intoe cells and the constraints specified in terms of these cells. More sophisticated
LP solvers allow the user to specify blocks of similar constraints in a concise form, which can
substantially reduce modeling time for large problems.

Finally, with regard to formutation, we point out that we have not stated cxplicitly the constraints
that X, and X, be nonnegative, Of course, they must be, since negative production quantities
make no sense. In many LP packages, decision variables are assumed to be nonnegative unless the
user specifies otherwise. In other packages, the user must include the nonnegativity constraints
explicitly. This is something to beware of when using LP software.

Solution

To get a general idea of how an LP package works, let us consider the above formulation from a
mathematical perspective. First, note that any pair of X, and X, that satisfies

15X, + 35X, <2400  workstation B

will also satisfy
15X, + 10X, < 2,400 workstation A
15X, + 5X; < 2,400 workstation C

because these differ only by having smaller coefficients for X;. This means thai the constraints
for workstations A and C are redundant. Leaving them out will not affect the solution. In general,
it does not hurt anything to have redundant constraints in an LP formulation. But to make our
graphical illustration of how LP works as clear as possible, we will omit constraints (1 6.110) and
(16.112) from here on.

Figure 16.15 illustrates problem (16.107)-(16.113) in graphical form, where X, is plotted on
the horizontal axis and X, is plotted on the vertical axis. The shaded area is the feasible region,
consisting of all the pairs of X, and X; that satisfy the constraints. For instance, the demand
constraints (16.108) and (16.109) simply state that X, cannot be larger than 100, and X cannot
be larger than 50. The capacity constraints are graphed by noting that, with a bit of algebra, we
can write constraints (16.111) and {16.113) as

15 400

X5+ 249 = —0.429X, + 68.57 (16.114)
15 35

X =< —(g) X+ % = —1.786X, + 171.43 (16.115)

If we replace the inequalities with equality signs in Equations (16.114) and (16.113), then these
are simply equations of straight lines. Figure 16.15 plots these lines. The set of X, and X; points
that satisfy these constraints is all the points lying below both of these lines. The points marked
by the shaded area are those satisfying all the demand, capacity, and nonnegativity constraints.
This type of feasible region defined by linear constraints is known as a polyhedron.
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FIGURE 16.15
Feasible region for LP example
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FIGURE 16.16
Solution to LP example
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Now that we have characterized the feasible region, we turm to the objective. Let Z represent
the value of the objective (i.e., net profit achieved by producing quantitics X; and X;). From
objective (16.107), X, and X, are related to Z by

45X, +60X, =2 (16.116)
We can write this in the usual form for a straight line as
_45 z z
X, = (E) X, +a—0 =—0.75X|+a (16.117)

Figure 16.16 illustrates Equation (16.117} for Z = 3,000, 5,557.94, and 7,000. Notice that
for Z = 3,000, the line passes through the feasible region, leaving some points above it. Henoe,
we can feasibly increase profit (that is, Z). For Z = 7,000 the line lics entirely above the feagible
region. Hence, Z = 7,000 is not feasible. For Z = 5,557.94, the objective function just touches
the feasible region at a single point, the point (X, = 75.79, X; = 36.09). This is the optimal
solutlon. Values of Z above 5,557.74 are infeasible, values below it are suboptimal. The optimal
product mix, therefore, is to produce 75.79 (or 75, rounded to an integer valuc) units of product 1
and 36.09 (rounded to 36) units of produet 2.

We can think of finding the solution to an LP by steadily increasing the objective value (Z),
moving the objective function up and to the right, untl it is just about to leave the feasihle region.
Because the feasible region is a polyhedron whose sides are made up of linear constraints, the
last point of contact between the objective function and the feasible region will be a cotner, or
extreme point, of the feasible region."' This observation allows the optimization algorithm to
ignore the infinitely many points inside the feasible region and scarch for a solution among the
finite set of extreme points. The simplex algorithm, developed in the 1940s and still widely used,
works in just this way, proceeding around the outside of the polyhedron, trying extreme points
until an optimal one is found. Other, more modem algorithms vse different schemes to find the
optimal point, but will still converge to an extreme-point solution.

Sensitivity Analysis

The fact that the optimal solution to an LP lies at an ¢xtreme point enables us to perform useful
sensitivity analysis on the optimal solution. The principal sensitivity information available to us
falls into the following three categories.

U sctually, it is possible that the optima) objective function lies right along a fiat spot connecting two
extreme points of the polyhedron. When this occurs, there are many pairs of X; and X that attain the
optimal value of Z, and the solution is called degenerate. Even in this case, however, an extreme point
(actually, at least two extreme points) will be among the optimal solutions.
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1. Coefficients in the objective function. For instance, if we were to change the unit profit
for product | from $45 to $60, then the equation for the objective function would change from
Equation (16.117) to

X, = (— @) X+ Z X z
1= 60 1t e = 1+ 50 (16.118)
30 the slope changes form —0.75 to —1; that is, it gets sieeper. Figure 16.17 illustrates the effect.
Under this change, the optimal solution remains (X; = 75.79, X; = 36.09). Note, however that
while the decision variables remain the same, the objective function does not. When the unit profit
for product 1 increases to $60, the profit becomes

60(75.79) + 60(36.09) = $6,712.80

The optimal decision variables remain unchanged until the coefficient of X, in the objective
funiction reaches 107.14. When this happens, the slope becomes so steep that the point where the
objective function just touches the feasible region moves to the extreme point (X, = 96, X, = 0).
Geometrically, the objective function “rocked around” to a new extreme point. Economically, the
profit from product 1 reached a point where it became optimal to produce all product 1 and no
product 2. .

In genera), LP packages will report a range for each coefficient in the objective function for
which the optimal solution (in terms of the decision variables) remains unchanged. Note that these
ranges are valid only for one-at-a-time changes. If two or more coefficients are changed, the effect
is more difficult to characterize. One has to rerun the mode] with multiple coefficient changes to
get a feel for their effect.

2 Coefficients in the comstraints. If the number of minutes required on workstation B by
product 1 is changed from 15 to 20, then the equation defined by the capacity constraint for
workstation B changes from Equation (16.114) to

a5 35

s0 the slope changes from —0.429 to —~0.571; again, it becomes steeper. In a manner analogous
to that descrihed above for coefficients in the objective function, LP packages can determine how
much a given coefficient can change before it ceases to define the optimal exireme point. However,
because changing the coefficients in the constraints moves the extreme points themselves, the
optimal decision variables will also change. For this reason, most LP packages do not report this
sensitivity data, but rather make use of this product as part of a parametric programming option
to quickly generate new solutions for specified changes in the constraint coefficients.

3. Right-hand side coefficients. Probably the most useful sensitivity information provided
by LP models is for the right-hand side variables in the constraints. For instance, in formulation
{16.107(16.113), if we run 100 minutes of overtime per week on machine B, then its right-hand

400
X, = = (@) X+ 2, = —0.571X, + 68.57 (16.119)

140.00 -
120.00

s 45X, + 60X, = 5,557.94

80.00 60X, + 60X, = 6.712.80

60.00
40.00 >
20,00 |

0.00
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side will increase from 2,400 to 2,500. Since this is something we might want to consider, we
would like to be able to determine its effect. We do this differently for two types of constraints:
a. Slack constraints are constraints that do not define the optimal extreme point. The capacity
constraints for workstations A and C are slack, since we determined right at the outset that they
could not affect the solution. The constraint X; < 50 is also slack, as can be seen in Figures 16.15
and 16.16, although we did not know this until we solved the problem.

Small changes in slack constraints do not change the optimal decision variables or objective
value at all, If we change the demand constraint on product 2 to X; < 49, it still won't affect
the optimal solution. Indeed, not until we reduce the constraint to X; < 36.09 will it have any
effect. Likewise, increasing the right-hand side of this constraint (above 50) will not affect the
solution. Thus, for & slack constraint, the LP package tells us how far we can vary the right-hand
side without changing the solution. These are referred to as the allowable increase and allowable
decrease of the right-hand side coefficients.

b. Tight constraints are constraints that define the optimal extreme point. Changing them changes
the extreme point, and hence the optimal solution. For instance, the constraint that the number of
hours per week on workstation B not exceed 2,400, that is,

15X, + 35X, < 2,400

is a tight constraint in Figures 16.15 and 16.16, If we increase or decrease the right-hand side, the
optimal solution will change. However, if the changes are small enough, then the optimal extreme
point will still be defined by the same constraints (i.e., the time on workstations B and D). Because
of this, we are able to compute the following:

Shadow prices are the amount by which the objective increases per unit increase in the
right-hand side of a constraint, Since slack constraints do not affect the optimal selution,
changing their right-hand sides has no effect, and hence their shadow prices are always
zero. Tight constraints, however, generally have nonzero shadow prices. For instance, the
shadow price for the constraint on workstation B is 1.31. (Any LP solver will automatically
compute this value.) This means that the objective will increase by $1.31 for every extra
minute per week on the workstation. So if we can work 2,500 minutes per week on
workstation B, instead of 2,400, the objective will increase by 100 x 1.31 = $131.
Maximum allowable increase/decrease gives the range over which the shadow prices are
valid, If we change a right-hand side by more than the maximum ailowable increase or
decrease, then the set of constraints that define the optimal extreme point may change, and
hence the shadow price may also change. For example, as Figure 16.18 shows, if we
increase the right-hand side of the constraint on workstation B from 2,400 to 2,770, the
constraint moves to the very edge of the feasible region defined by 25X, + 14X; < 2,400
(machine D} and X; < 50. Any further increases in the right-hand side will canse this
constraint to become slack. Hence, the shadow price is $1.31 up to a maximum allowable

80.00
60.00 -

40.00
20.00 k

0.00
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increase of 370 {that is, 2,770 — 2, 400). In this example, the shadow price is zero for
changes above the maximum allowable increase. This is not always the case, however, so in

general we must resolve the LP to determine the shadow prices beyond the maximum
allowable increase or decrease.

Study Questions

1. Although the technology for solving aggregate planning models (linear programming) is well
established and AP modules are widety available in commercial systems (e.g., MRP 1L
systems), aggregate planning does not occupy a central place in the planning function of many
firms. Why do you think this is true? What difficulties in modeling, interpreting, and
implementing AP models might be contributing to this?

2. Why does it make sense to consider workforce planning and aggregate planning
simultaneously in many situations?

3, What is the difference between a chase production plan and a level production plan, with
respect 1o the amount of inventory carried and the fluctuation in cutput quantity over time?
How do the production plans generated by an LP model relate to these two types of plan?

4. In a basic LP formulation of the product mix aggregate planming problem, what information is
provided by the following?

a, The optimal decision variables,

b. The optimal objective function.

¢. Identification of which constraints are tight and which are slack.
4. Shadow prices for the right-hand sides of the constraints.

Problems

1. Suppose a plant can supplement its capacity by subcontracting part of or all the production
of certain parts.
a. Show how to modify LP (16.28)-(16.32) to include this option, where we define

¥, = units of product i received from a subcontractor in period ¢

&, = premium paid for subcontracting product  in period ! (i.e., cost
above variable cost of making it in-house)

;, = minimum amount of product i that must be purchased in period ¢
(e.g., specified as part of long-term contract with supplier)

$;; = maximum amount of product § that can be purchased in period
f (e.g., due to capacity constraints on supplier, as specified
in long-term contract)

b. How would you modify the formulation in part @ if the contract with a supplier stipulated
only that total purchases of product i over the time horizon must be at least v ?

¢. How would you modify the formulation in part 4 if the supplier contract, nstead of
specifying v and B, stipulated that the firm specify a base amount of product i, to be
purchased every month, and that the maximum purchase in a given month can exceed the
base amount by no more than 20 percent?

d. What role might models like those in parts « to ¢ play in the process of negotiating
contracts with suppliers?

2. Show how to modify LP (16.49)-(16.54) to represent the case where overtime on all the
workstations must be scheduled simultanecusly (i.e., if one resource muns overtime, all
resources mup overtime). Describe how you wouid handle the case where, in general,
different workstations can have different amounts of overtime, but two wotkstations, say A
and B, must always be scheduled for overtime together.
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3

4.

Show how to modify LP (16.61)-{16.67) of the workforce planning problem to
accomnmodate multiple products.

You have just been made corporate vice president in charge of manufacturing for an
automotive components cotnpany and are directly in charge of assigning products to plants,
Among many other products, the firm makes automotive batteries in three grades:
heavy-duty, standard, and economy. The unit net profits and maximum daily demand for
these products are given in the first table below. The firm has three locations where the
butteries can be produced. The maximum assembly capacities, for any mix of battery grades,
are given in the second table below. The number of batteries that can be produced at a
location is limited by the amount of suitably formulated lead the location can produce. The
lead requirements for each grade of battery and the maximum lead production for each
location are also given in the following tables,

T

Unit l Maximum Lead

Profit

Demand

Product

($/battery)

(batteries/day)

Requirements
(Ibs/battery)

Heavy-duty
Standard
Economy

12
10
7

100
900
450

21
17
14

Plant
Location

Assembly
Capacity
(batteries/day)

Maximum Lead
Production
(Ihs/day)

530
750
225

10,000
7,000
4,200

a. Formulate a linear program that allocates production of the three grades among the three
locations in a manner that maximizes profit.

b. Suppose company policy requires that the fraction of capacity (units scheduled/assembly
capacity) be the same at all locations. Show how to modify your LP to incorporate this
constraint.

¢. Suppose company policy dictates that at feast 50 percent of the batteries produced must
be heavy-duty. Show how to modify your LP to incorporate-this constraint.

. Youohimga, Inc., makes a variety of computer storage devices, which can be divided into

two main families that we call A and B. All devices in family A have the same routing and
similar processing requirements at each workstation; similarly for family B. There are a total
of 10 machines used to produce the two families, where the routings for A and B have some
workstations in common {i.e., shared) but also contain unigue (unshared) workstations.
Because Youchimga does not always have sufficient capacity to meet demand,
especially during the peak demand period (i.c., the months ncar the start of the school year in
September), in the past it has contracted out production of some of its products to vendors
{i.¢., the vendors manufacture devices that are shipped out under Youohimga's label). This
year, Youohimga has decided to use a systematic aggregate planning process to determine
vendoring needs and a long-term production plan.
a. Using the following notation

X;, = units of family i (i = A, B) produced inmonthr ¢ = 1,..., 24) and available
to meet demand in month ¢
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V.. = units of family { purchased from vendor in month ¢ and available to meet demand
in month ¢

I, = finished goods inventory of family i at end of month ¢

d;, = units of family i demanded {and shipped) during month ¢

¢;j; = hours available on work center j{j = 1. ..., 10) in month ¢

a;; = hours required at work center j per unit of family §

v; = premivm (i.e., ¢xtra cost) per unit of family i that is vendored instead of being
produced in-house

h; = holding cost to carry one unit of family i in inventory from one month to the next

formulate a linear program that minimizes the cost (holding plus vendoering premium)
over a two-year {24-month) planning horizon of meeting monthly demand (i-e., no
backorders ase permitted). You may assume that vendor capacity for both families is
unlimited and that there 1s no inventory of either family on hand at the beginning of the
planning horizon.

b, Which of the following factors might make sense to examine in the aggregate planning
maodel to help formulate o sensible vendoring sirategy?

* Altering machine capacitics

+ Sequencing and scheduling

* Varying size of workforce

« Alternate shop floor control mechanisms

» Vendonng individual operations rather than complete products
= All the above

c. Suppose you run the model in part a and it suggests vendoring 50 percent of the total
demand for family A and 50 percent of the demand for B. Vendoring 100 percent of A
and 0 percent of B is capacity-feasible, but results in a higher cost in the model. Could
the 1000 plan be preferable to the 50- 50 plan in practice? If so, explain why.

6. Mr. B. O’Problem of Rancid Industries must decide on a production strategy for two
top-secret products, which for security reasons we will call X and Y. The questions concern
(1) whether to produce these products at all and (2) how much of each to produce. Both
products can be produced on a single machine, and there are three brands of machine that
can be leased for this purpose. However, because of availability problems, Rancid can lease
at most one of each brand of machine. Thus, O'Problem must also decide which, if any. of
the machines to Jease. The relevant machine and product data are given below;

Hours to Produce | Hours to Produce | Weekly Capacity Weekly Lease +
Machine One Unit of X One Unit of Y (hours) Operating Cost (§)
Brand 1 0.5 1.2 80 20,000
Brand 2 0.4 1.2 80 22,000
Brand 3 0.6 0.8 80 18,000

Maximum Demand | Net Unit Profit
Product (umits/week) ($/unit)

X 200 150
Y 100 225
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a. Letting X, represent the numnber of units of product ¢ produced per week on machine j
(for example, X 4; is the number of units of A produced on the brand 1 machine),
formulate an LP to maximize weekly profit (including leasing cost) subject to the
capacity and demand constraints. (Hint: Observe that the leasing/operating cost for a
particular machine is only incurred if that machine is used and that this cost is fixed for
any nonzero production Jevel, Carefully define 0-1 integer variables to represent the
all-or-nothing aspects of this decision.)

b. Suppose that the suppliers of brand 1 machines and brand 2 machines are feuding and
will not service the same company. Show how to modify your formulation {0 ensure that
Rancid leases either brand 1 or brand 2 or neither, but not both.

7. All-Balsa, Inc., produces two models of bookcases, for which the relevant data are

summarized as follows:

Bookcase 1 | Bookcase 2

Selling price $15 $8

Labor required 0.75 hrfunis | 0.5 hrfunit
Battleneck machine time required | 1.5 hr/unit .8 hriunit
Raw material required 2 bffunit 1 bffunit

P1 = units of bookcase 1 produced per week
P2
OT = hours of overtime used per week

it

units of bookcase 2 produced per week

RM = board-feet of raw material purchased per week
Al = dollars per weck spent on advertising bookcase |
A? = dollars per week spent on advertising bookcase 2

Each week, up to 400 board feet (bf) of raw material is available at a cost of $1.50/bf. The
company employs four workers, who work 40 hours per week for a total regular time labor
supply of 160 hours per week. They work regardless of production volumes, so their salaries
are treated as a fixed cost. Workers can be asked to work overtime and are paid $6 per hour
for overtime work. There are 320 hours per week available on the bottleneck machine.

In the absence of advertising, 50 units per week of bookcase 1 and 60 units per week of
bookease 2 will be demanded. Advertising can be used to stimulate demand for each product.
Experience shows that each dollar spent on advertising bookcase 1 increases demand for
bookcase 1 by 10 units, while each dollar spent on advertising bookcase 2 increases demand
for bookcase 2 by 15 units. At most, $100 per week can be spent on advertising.

An LP formulation and solution of the problem to determine how much of each product
to produce each week, how much raw material to buy, how much overtime to use, and how
much advertising to buy are given below. Answer the following on the basis of this output.

MAX 15 P1 + 8 P2 - 6 0T - 1.5 RM - Al - Az
SUBJECT TO

2) P1 - 10 Al <= 50

3} P2 - 15 A2 <= 60

4) 0.75 P1 + 0.5 P2 - OT <= 160

5} 2 Pl + P2 - RM «= 0

6) BRM <= 400

7} Al + AZ <= 100

8} 1.5 P1 + 0.8 P2 <= 320
END
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OBJECTIVE FUNCTION VALUE

1} 2427,66700

VARIABLE VALUE . REDUCED COST
Pl 160.000000 .000000
P2 80.000000 .000000
oT . 000000 2.133334
RM 400.000000 .000000
Al 11.000000 -000000
A2 1.333333 .000000

ROW SLACK COR SURPLUS DUAL PRICES

2} 000000 .100000
3} . 000000 066667
4} . 000000 3.B66666
S] L 000000 &.000000
6} L000G00 4.500000
7} 87 6666A0 .000000
8} 16.000000 .ogpope
NCO. ITERATIONS= 5

RANGES IN WHICH THE BASIS IS UNCHANGED:

OBJ COBFFICIENT RANGES

VARIABLE CURRENT ALLOWABLE ALLOWAEBLE
COEF INCREASE DECREASE
Pl 15.000000 .966667 .533333
P2 8.000000 .2666GET .483333
oT -6.000000 2.133334 INFINITY
EM -1.500000 INFINITY 4.500000
Al -1.000000 1.000000 5.33333%5
A2 -1.000000 1.000000 7.249989

RIGHT-HAND SIDE RANGES

ROW CURRENT ALLOWABLE ALLOWABLE
RHS INCREASE DECREASE
2 50.000000 110.000000C 876.666600
3 60.000000 20,000000 1315.000000
4 160.000000 27.500000 2.500000
5 .000000 6.666667 55.000000
& 400,000000 6.666667 55.000000
7 100.000000 INFINITY §7.666660
B8 320.000000 INFINITY 16.000000

a. If overtime costs only $4 per hour (and all other parameters remained unchanged), how
much overtime should All-Balsa use?

b. If each unit of bookcase 1 sold for $15.50 (and all other parameters are unchanged), what
will the optimal profit per week be—or can you not tell without resolving the LP?

¢. What is the most All-Balsa should be willing to pay for another unit of raw material?

d. If each worker were required {as part of the regular workweek) to work 43 hours per week
(and all other parameters remained unchanged), what would the company’s profit be?

e, If each unit of bookcase 2 sald for $10 (and all other parameters remained unchanged),
what would be the optimal quantity of bookease 2 to produce—-or can you not tell
without resolving the LP?
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£ Reconsider the All-Balsa problem formulation and suppose that instead of having 400 bf
of raw material available at $1.50/bf, All-Balsa faces a two-tier pricing scheme such that
the first 200 bffweek costs $2.00/bf, but any amount above 200 bffweek up to a limit of an
additional 300 bfiweek costs $p/bf. (Note: p is a constant, not a variable, and we cannot
purchase the $ p/bf raw material unless we first purchase 200 bf of the $2.00 raw material.)
To modify the LP to compute an “optimal” production/advertising policy, we define

RM1 = bf of raw material purchased at $2.00/bf
RM2 = bf of raw material purchased at § p/bf

To formulate an appropriate LP to represent this new pricing schieme, we first replace
1.5RM in the objective function by 2RM1 + pRM2.
i. If p = 2, what other changes in the previous LP make it properly reflect the new
pricing scheme?
ii. If p < 2, what other changes in the previous LP make it properly reflect the new
pricing scheme?

8. Consider a production line with four workstations, labeled j = 1, 2, 3, and 4, in tandem (all
products flow through alt four machines in order). Three different products, labeled { = A,
B, and C, are produced on the tine. The hours required on each workstation for each product
and the net profit per unit sold (r;) are given as follows:

il1] 23] 4! n

24 | 1.1 ]| 08| 3.0 $50
2022 | 82| 21| $65
09109 | tn | 25| $70

0w

The number of hours available (c;) and the upper and lower limits on demand (d;, and d,,)
for each product over the next four quarters are as follows:

Cir 640 640 | 1,280 | 1,280
Cx 640 640 640 640
oy | 1,920 1 1920 0 1,920 | 1,920
ce | 1,280 | 1,280 | 1,280 | 2,560

dg; 100 50 50 75

de | 100 | 100 | 100 | 100
d, { 20| 20| 20| 25
de, | 300 ) 250 | 250 | 400

a. Suppose we use a quarterly holding cost of $5 and a quarterly backorder cost of $10 per
itern on all products and allow backordering. Formulate an LP to maximize profit minus
holding and backorder costs subject to the constraints on workstation capacity and
minimum/maximum sales.
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10.

., Using the LP solver of your choice, solve your formulation in part 2. Which constraints

are binding in your sofution?

. Suppose that there is an inspect operation immediately after station 2 (which has plenty

of capacity and therefore does not need to be modeled as an extra resource) and 20
percent of the parts (regardless of product type) are recycled back through stations 1 and
2. Show how to modify your formulation in part a to maodel this,

. A manufacturer of high-volitage switches projects demand (in units} for the apcoming year t

be as follows.

Jan 1,000 | ul 3200

Feb 1,000 | Avg 2.000

Mar 1,000 | Sep  1.000

Apr 2000 | Oct 900

May 2400 | Nov 300

Jun 2,500 | Dec 300
~

The plant runs 160 hours per month and produces at an average rate of 10 switches per hour.
Unit profit per switch sold is $50, and the estimated cost to hold a switch in inveatory for one
month is $5. There is ne invensory at the start of the year, Overtime can be used at a cost of
$300 per hour.

d.

b

Compute the inventory-holding and overtime cost of a chase production strategy (ie.,
producing the amount demanded in each month).

Compute the inventory holding and overtime cost of a level production strategy (i.c.,
producing the same amount each month}. Tf the monthly production quantity is set equal
to average monthly demand, how much inventory will be left at the end of the year?
Compute a production strategy by solving a linear program to maximize profit (i.e., net
sales revenue minus inventory carrying cost minus overtime cost). Is the amount of
overtime in the plan reasonable? If not, what changes to the LP model could be made to
generate a more reasonable solution?

' How does the solution change if the inventory carrying cost is reduced to $3 per unit per

month? If overtime cosls are reduced to $200 per hour? Given that these costs are
approximate, what do these results imply about the production plan?

Reconsider Problem 2 of Chapter 6 in which a manufacturer produced three models of
vacuum cleaner on a three-station production line.
4. Use linear programming to compute a monthly production plan that maximizes monthly

b.

profit, and compare it to the profit resulting from the current plan given in Chapter 6 and
those suggested by the labor hours and ABA cost accounting calculations.

Could this LP solution have been arrived at by rank-ordering the products according to
profitability by a cost accounting scheme? What does this say about the effectiveness of
using accounting methods to plan production scheduies?
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One’s work may be finished some day,
but one’s education never.
Alexandre Dumas

17.1 Introduction
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A major theme of this book is the central role of inventory in the operational behavior
of a production system. We began with a historical review of inventory control and its
relationship to production control in Part I. In Part I, we deepened our understanding of
the interaction between inventory (WIP, in particular) and other performance measures,
such as throughput and cycle time. Now in Part ITT we are ready to combine our historical
and factory physics insights to address the practical problem of managing inventories
in a manufacturing system. Our objective is to improve inventory efficiency throughout
the system. That is, we do not simply seek to reduce inventories; we seek to ensure that
the purpose of inventories is met with minimal dollar investment. In modem patlance,
this overall systemwide coordination of inventory stocks and flows ts known as supply
chain management.

For purposes of otr discussions here, we divide inventories in a supply chain into
four categories:

1. Raw materials are components, subassemblies, or materials that are purchased
from outside the plant and used in the fabrication/assembly processes inside the
plant.

2. Work in process (WIP) includes all unfinished paris or products that have been
released to a production line.

3. Finished goods inventory (FGI) is finished product that has not been sold,

4. Spare parts are components that are used to maintain or repair production
equipment.

The reasons for holding each of these types of inventory, and therefore the options
for improving efficiency, are different. Hence, we treat each category separately in the
following discussions.
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17.2 Reasons for Holding Inventory

17.2.1 Raw Materials

If we could receive raw materials from suppliers in literal just-in-time fashion (ie.,
exactly when needed by the production system), we would not need to carry any raw
materials inventories. Since this is never pessible in practice, all manufacturing systems
carry stocks of raw materials. There are three main factors that influence the size of
these stocks.

1. Batching. Quantity discounts from suppliers, limited capacity of the plant’s
purchasing function (e.g., a limit on the number of purchase orders that can be
placed and tracked), and economies of scale in deliveries provide incentive to
order raw materials in bulk.! We refer to inventory that addresses batching
considerations as cycle stock, since it represents stock held between ordering
cycles.

2. Variability. When production gets ahead of schedule, supplier deliveries get
behind schedule, or quality problems cause excessive scrap loss, the line will
shut down for lack of materials if extra stock is not available. This extra stock
can be planned for directly as a safety stock (i.e., by ordering se that expected
stock levels remain above the safety level) or be the consequence of a safety
lead time (i.e., order materials so that they arrive before needed and therefore
wait in raw materials inventory). In either case, we refer to inventory carried as
protection against variability as safety stock.

3. Obsolescence. Changes in demand or design can render some materials no
longer needed, s0 some inventory in manufacturing systems does not address
either of the above purposes. This inventory, which we term obsolete
inventory, may have been ordered as cycle or safety stock, but is now
essentially useless and must be disposed of and written off as quickly as
financial reporting considerations will permit.

To recognize these reasons for carrying raw materials inventories is useful in iden-
tifying improved management policies. However, one should remember that they are
not strictly separate. For instance, as we pointed out in Chapter 2, safety stock and
cycle stock provide protection against variability (i.e., because if we order in very large
batches, then we reduce the frequency with which inventory levels fall to the point
where a stockout is possible). Also, the level of obsolete inventory is clearly affected
by the levels of cycle and safety stock (i.e, if we order in large batches or carry large
safety stocks, then we risk having large amounts of inventory become obsolete due to
system changes). Appreciating these interactions can also help us devise raw materials
management policies.

17.2.2 Work in Process

Despite the JIT goal of zero inventories, we can never operate a manufacturing system
with zero WIP since, as we saw in Part II, zero WIP implies zero throughput. In Chapter
7, we derived a critical WIP level that represents the smallest WIP level required by

LThese factors are precisely those that motivated the fixed order cost in the EOQ model presented in
Chapter 2. The EOQ model balances this fixed cost against inventory carrying costs to determine an
sconomic erder quantity.
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a line to achieve full throughput under the best conditions. Under realistic conditions,
actual WIP levels frequently exceed the critical WIP level by a large amount (e.g., often
20 to 30 times). This WIP will be in one of five states:

1. Queueing if it is waiting for a resource (person, machine, or transport device),
2. Processing if it is being worked on by a resource.

3. Waiting for batch if it has to wait for other jobs to arrive in order to form a
batch, This batch may serve to fill a bulk manufacturing operation {(e.g., heat
treat, in which a roomful of jobs is subjected to a burn-in operation
simultaneously) or a move operation (e.g., when jobs are moved only in full
pallets). Note that once the process or move batch has been formed, any
additional waiting time for the resource (e.g., for the heat treater or the forklift
to become available) is classed as queueing time.

4. Moving if it is actually being transported between resources,

5. Waiting to match if it consists of components waiting at an assembly operation
for their counterparts to arrive so that an assembly can occur. Once the entire
“Kkit” of parts has arrived, any additional waiting time for the assembly resource
is defined as queueing time.

To use the above classification in a WIP management/reduction program, two obser-
vations are needed. First, as illustrated in Figure 17.1, in most manufacturing systems
the fraction of WIP that is actually processing or moving is small (e.g., less than 10
percent; see Bradt 1983 for empirical documentation). The majority of WIP is in queue,
waiting for batch, or waiting to match. Clearly, a WIP reduction program must address
these latter categories to be successful.

Second, queueing WIP, wait-for-batch WIP, and wait-to-match WIP are the result
of different causes. As we saw in Part I, the principal causes of queueing are high
utilization and variability (both flow variability and process variability). Wait-for-batch
WIP is clearly caused by batching for process or transport; the larger the batch size,
the more WIP required. Wait-to-match WIP is caused by lack of synchronization in the
arrival of parts to the assembly process, sorae of which is due to simple flow variability
and some of which can be caused by the production control process. These differences
imply that the different types of WIP are amenable to different management policies, as
we will discuss later.

-
Waiting to
match

Processing
Moving

Queneing

ot e e ——— s e el ]

—_——
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17.2.3 Finished Goods Inventory

If we could ship everything we produced directly to customers as socon as processing
was complete, there would be no need for FGI. Although some manufacturing systems
(e.g., heavily loaded job shops that make custom products} can almost achieve this, many
cannot. There are five basic reasons for carrying FGI.

1. Customer responsiveness. To provide delivery lead times that are shorter than
manufacturing cycle imes, many firms make use of a make-to-stock (instead of a make-
to-order) policy. For example, many products, such as building materials (¢.g., roofing
shingles, lumber), standard electrical components (¢.g., resistors, capacitors), and basic
food products (e.g., baking soda, com oil) are commedity products. As such, their price
and specifications (e.g., quality) are set by the market. The only competitive issue, then,
is delivery. For this reason, such products are frequently produced to stock. The amount
of FGI needed to support a given make-to-stock system depends on the variability of
customer demand and the desired level of customer service,

An approach that combines the effectiveness of make-to-stock and make-to-order
procedures is assemble-to-order. This procedure produces components to stock and
then assembles these components to order. In the terminology of Chapter 10, make-
to-order places the push/pull interface at raw materials, make-to-stock is places it at
finished goods, while assemble-to-order places it somewhere in between. The result is
faster response than the traditional make-to-order approach with less inventory than a
make-to-stock policy.

2. Batch preduction. If, for whatever reason, production occurs in prespecified
quantities (batches), then output will sometimes not match customer orders and any
excess will go into finished goods inventory. For example, a steel mill that runs 250-
ton batches {in order to efficiently utilize the casting furnace) but has customer orders
averaging 50 tons will frequently have to place remnants of batches of various grades of
steel into FGI.

3. Forecast errors. When jobs are released without firm customer orders, either
to replenish stock in a make-to-stock system or to meet anticipated orders in a make-
to-order system, product will inevitably be built that does not sell as anticipated. This
excess will wind up in FGI.

4. Production variability. In a make-to-order system where orders cannot be
shipped early (or have a limit on how early they can be shipped), variability in pro-
duction friming will sometimes result in product that will have to reside in FGI while
awaiting shipment. In either a make-to-order or a make-to-stock system, variability in
production quantity (e.g., due to random yield loss) can result in overproduction relative
to demand (e.g.. if we “overinflate” to compensate for the yield loss). Again, the excess
will go into FGI.

5. Seasonality. One approach to dealing with demand that varies with season (e.g.,
lawnmowers, snowblowers, room air conditioners) is to build inventory during the off
season to meet peak demand. This built-ahead inventory will become part of FGI.

Notice that the factors motivating finished goods inventory interact. For instance,
whenever we build FGI 1o provide short lead times or to cover seasonal demand we
increase exposure of the system to forecasting errors. Because of this, it is important
to view FGI holistically, Only by doing this can we consider basic structural changes
that may offer significant potential. For instance, maybe the system should really be run
in make-to-order instead of make-to-stock fashion; maybe excess capacity or seasonal
1abor should be used instead of built-ahead inventory to address seasonal demand, or
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maybe the push-pull interface should be relocated (e.g., to use an assemble-to-order
strategy). We will return to these options in our discussion of improvement strategies.

Spare parts are not used as direct tnputs to finished products, but they do support the
production process by keeping the machines running. In many systems the dollar value
of inventory involved is not large, but the consequences of shertfalls can be severe (e.g.,
the entire line can be shut down for lack of a critical part). In some systems (e.g., a
contract service operation that supports repairs in a nationwide network of machines),
however, the dollar value of spare parts inventories can be substantial. In either case, the
primary reasons for stecking spare parts are

1. Service. The main objective of any spare paris system is to support &
maintenance and repair process. If repair personnel must wait for a part {e.g.,
from a central storage site or an outside supplier), then the time to complete a
repair can be dramatically lengthened. All other things being equal, achieving
higher service (i.e., avoidance of delay due to an out-of-stock part) requires a
higher level of spare parts inventory.

2. Purchasing/production lead times. If spare parts could be purchased or
produced instantly, there would be no need to stock them. Unfortunately, this is
virtually never the case; 5o to provide the desired service, we must carry spare
parts inventories. In general, the longer the lead time to obtain a part, the more
stock we will have to carry.

3. Batch replenishment. If there are economies of scale in replenishing spare
parts (¢.g., quantity discounts on a purchased part or a large fixed cost to
produce a part), then it may make sense to purchase them in bulk. Of course, a
larger replenishment batch implies a higher average inventory level.

In theory, spare parts inventory systems are not much different from FGI systems.
In both, we stock parts, possibly in batches, to satisfy an uncertain demand process
with some level of service. Because of this similarity, it may well be possible to use
similar tools for controlling spare parts and FGI. However, it is important to recognize the
difference between the roles played by the two types of inventory. For instance, it may
be reasonable to set a fill rate of 90 percent for FGI, based on industry benchmarking,
say. But a 90 percent fill rate for spare parts may be far too low when one considers the
logistical and financial consequences of causing a long machine outage by stocking out
on a critical part. Thus, while we might use similar models to address the two types of
inventory, we must carefully consider the costs and objectives mvolved in order to set
appropriate parameters for the models.

Having reviewed the reasons for holding different types of inventory, we now review
techniques for improving the efficiency (i.c., attaining the same benefits with a smaller
overall investment) of each type of inventory.

17.3 Managing Raw Materials

As noted above, the objective in managing raw materials is to have them available when
needed by the production process without carrying any more inventory than necessary.
Some strategies can enhance our ability to do this for all parts. Others are economically
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viable for only certain classes of parts. Therefore, our basic strategy is one of “divide and
conquer,” in which we apply different approaches to different classes of raw material. In
the following sections we present some overall improvement strategies, a classification
scheme, and focused control policies geared to specific part ¢lasses.

17.3.1 Yisibility Improvements

Obviously, we can do a better job of purchasing raw materials if we know what parts are
needed than if we must guess, Unfortunately, manufacturing cycle times and purchasing
lead times are frequently long enough o require us to purchase at least some of the
materials before we have tirm customer orders. In the short term, we may have no
option ather than to maintain safety stocks of raw materials to buffer against purchasing
mistakes. In the long term, however, we can improve the situation via the following
policies:

1. Improve forecasting. If forecasts of future demand are truly horrible, better
projections may be possible through the use of systematic forecasting
techniques (see Appendix 13A). However, such methods cannot get around the
first law of forecasting—forecasts are always wrong. Thus, there are limits to
the improvements possible through forecasting.

2. Reduce cycle times. Reduced manufacturing cycle times imply that jobs can
be released closer to their due dates. Hence, purchased parts can be ordered
later, when customer demands are firmer. In systems with long ¢ycle times,
cycle time reduction can improve forecasts much more than use of sophisticated
forecasting techniques can. We discuss specific techniques for cycle time (and
WIP) reduction in Section 17.4.

3. Improve scheduling. 1f scheduling is poor, then projected use of purchased
parts may be very different from actual use. For instance, a schedule generated
with an infinite-capacity MRP model may project much carlier completion of
jobs than actually will occur. This will result in purchased parts arriving well
before they are actually used and hence will cause raw materials inventories to
be inflated. A good finite-capacity scheduler will generate more realistic
schedules and thus will enable purchased parts to be brought in closer to when
they are used.

17.3.2 ABC Classification

In most manufacturing systems, a small fraction of the purchased parts represent a
large fraction of the purchasing expenditures.? To have maximum impact, therefore,
management attention should be focused most closely on these parts. To accomplish
this, many manufacturing firms use some sost of ABC classification for purchased parts
and materials. In a typical definition of ABC categories, we rank-order the purchased
parts according to the annual dollar value spent on each, and we define

A parts: the first 5 to 10 percent of the parts, accounting for 75 to 80 percent of
total annual expenditures.

2This is an example of Pareto’s law, commonly known as the “80-20 rule,” named for Italian economist
Viifredo Pareto (18481923} who observed that a large fraction of wealth tends to be concentrated in a small
fraction of the population.
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B parts: the next 10 to 15 percent of the parts, accounting for 10 to 15 percent of
total annual expenditures.

C parts: the bottom 80 percent or so of the parts, accounting for only 10 percent
or so of total annuat expenditures.

Because their number is relatively small and their cost is high, it makes sense to
use sophisticated, time-consuming methods to tightly coordinate the arrival of A parts
with their use by the production process. Such efforts are generally not warranted for C
parts, since the cost of holding small excess quantities of inventory is not Jarge. The B
parts are in-between, so they deserve more attention than the C parts, but not as much as
the A parts. Approaches may vary from system to systern, but the main point of ABC
classification remains the same: Inventories of different classes of parts should be treated
differently.

We discuss some suitahle techniques and where each is applicable in the following
sections.

Very expensive A parts, for which holding inventory is costly, and extremely bulky
parts (e.g., packaging materials), for which holding inventory is inconvenient, are good
candidates for tight inventory control. The way to maintain the absolute minimum level
of inventory of a part is to coordinate deliveries with use in the production process. This
is precisely the idea behind just-in-time (JIT).

A typical JIT contract with a supplier calls for frequent deliveries (e.g., weekiy,
daily, or even more often, depending on the system) in small quantities closely matched
to what is required by the production schedule. Since production schedules are prone
to change, most JIT contracts allow adjustment of the order quantities almost up to
the delivery time (although most contracts also specify limits on the amount of change
allowed).

To give suppliers a reasonable chance of meeting delivery requirements, well-
managed JIT procurement systems provide visibility of the production schedule to sup-
pliers. The primary goal is to alert suppliers as quickly as possible to any changes in
the schedule. But such visibility can have other benefits. It can eliminate the need for
purchase orders. For instance. a contract with a supplier of automotive brakes might
call for it 1o look at the final assembly schedule and deliver the proper brakes to support
it. The system could go even further and eliminate invoices for the brakes by simply
counting the number of automobiles produced and sending payment to the supplier for
them, (The implicit, and reasonable, assumption is that every automobile has a set of
brakes.)

In concept, JIT contracts with suppliers are very attractive. However, in order
for them to work, suppliers must be reliable, with regard to both delivery timing and
quality. If a shipment is late or defective, then the entire linc may be stopped for lack
of parts. Because of this, firms that rely extensively on JIT deliveries of raw materials
generally institute some kind of vendor certification program. Good vendor certification
programs involve both reviews of supplier procedures and efforts to help vendors improve
their systems.

Because close supervision and cultivation of suppliers is a prerequisite for T de-
liveries of raw materials, this approach may not be a feasible option for smaller firms.
A firm whose purchases compose a very small fraction of a supplier’s business may
simply lack the clout to persuade the supplier to deliver parts on a JIT basis, While the
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current trend toward responsiveness {e.g., as embodied in buzzwords such as time-based
competition, total cycle time, short-cycle manufacturing) may be increasing the number
of suppliers who are witling to offer JIT deliveries to firms other than their largest cus-
tomers, true JIT contracts are still largely unavailable to the typical small firm. Thus,
they must seek other approaches to managing expensive raw malerials inventories,

17.3.4 Setting Safety Stock/Lead Times for Purchased Components

Even if a firm cannot or will not use JIT deliveries for expensive A parts, it s1ill makes
sense to link purchases of these parts closely to the production schedule (instead of, say,
ordering infrequently in large batches and supplying the line from an amply stocked
materiais crib). In MRP language, this means that expensive parts should be ordered on
a lot-for-lot basis. For example, if we plan to produce 1,000 high-resolution monitors
n weeks from now, we should order 1,000 cathode-ray tbes to arrive some fixed safety
lead time in advance of the schedule.

Notice that this approach is different from JIT because we are ordering parts against
a planned schedule, rather than having them delivered in synchronization with actual
production. But if true JIT is not possible, this may be the best we can do. Of course,
if (when) the schedule changes, production of the desired amounts may be impossible
due 10 lack of appropriate raw materials. This implies that short delivery lead times are
less difficult to work with than long ones, because purchases will be made closer to due
dates, when the schedule consists more of firm orders and less of speculative forecasts.
In the long run, a higher-priced supplier with short lead times may be more economical
than a lower-priced one with long lead times.

As we noted in Chapter 12 in the context of supplier quality, management of pur-
chased parts is extremely important in assembly systems with many parts. There we
pointed out that if we purchase 10 parts with sufficient safety lead times such that each
has a service level of 95 percent, then the probability of having all 10 parts arrive in
time to meet the schedule is 0.95'® = 0.5987, which represents very poor service. As-
sembly systems with many purchased parts require extremely high service for each part
in order to meet schedules reliably. For instance, for all 10 paris to be available to
meet the schedule 95 percent of the time requires that each part have a service level of
0.95'/1% = 0.9949.

Finally, note that it is not necessary to set the same service level for every A part
that is ordered on a lot-for-lot basis. If one part is particularly expensive, it might make
sense 1o set its service relatively low (say, 96 percent) and the other service levels higher
(say. 99.9 percent) to compensate. If we let §; represent the service level chosen for the
jth part and there are # parts in total, then we can ensure 95 percent compliance with
the schedule provided we choose the §; values such that

S| 8---8, =095

A formal method for choosing service levels to meet an overall service level with minimal
average investment in inventory is described in Hopp and Spearman (1993a).

17.3.5 Setting Order Frequencies for Purchased Components
The above JIT and tot-for-lot purchasing schemes are reasonable options for expensive A

parts, and they might also work for intermediate B parts, but are generally not appropriate

31f yield loss is a problem, we may also need to maintain a phanned level of safety stock.
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for inexpensive C parts. It doesn’t make sense to order screws, washers, two-cent
resistors, efc., to be delivered in tight synchronization with the production schedule. The
increased risk of an outage and the extra purchasing and material handling costs simply
cannot be justified by reductions in inventory investment.

The problem of managing inexpensive purchased parts can be thought of in terms
of lot sizing. The essential cconomic tradeoff is between inventory investment and
purchasing cost. Recall that this is precisely the tradeoff addressed by the econamic
order quantity (EOQ) model. Indeed, we could directly apply the single-product model
presented in Section 2.2, pravided we are willing to ignore part interactions. That is, if
we let

N = total number of distinct part numbers in system

v
[

demand rate (units per year) for part §
¢; = unit production cost of part j

!

A = fixed cost to place an order for any part
h; = cost to hold one unit of part j for one year
Q, = size of order or lot size for part j {decision variable)

we can compute the lot size for part j using the standard EOQ formula:

[24D;
0=y : (7.1)

The most difficult input to estimate in this formula is the fixed order cost,? A, Ideally,
this should refiect those costs that are incurred each time an order is placed. These could
include actual shipping costs, purchasing agent time spent to process and follow up on the
order, time required to receive the order, and so on. Overhead costs (e.g., maintenance
of a purchasing department) should not be included in A;.

A potential problem with the above approach is that it does not consider interactions
between parts, which can occur when (1) parts share common delivery systems and (2}
we consider the overall capacity of the purchasing department. For instance, if different
parts can share common delivery trucks, then there is an incentive to order parts at the
same time, when possible. In Chapter 2, we mentioned the powers-of-two replenishment
policy as one way to accomplish this. Given the robustness of the EOQ cost function
and the roughness of the input data, a reasonable approach to the multipart purchasing
problem is to simply use the EOQ formula to compute an optimal order interval for each
part {that is, D;/Q}) and then round to the nearest power of two of some convenient
base ordering cycle. For instance, if weekly orders are practical, then round the EOQ
interval to the nearest value in the set; 1 week, 2 weeks, 4 weeks, 8§ weeks, etc.

To consider the overall capacity of the purchasing function, we could approach the
problem as one of minimizing the total inventory holding cost for all parts subject to
the constraint that the average order frequency not exceed some specified constant F.
Since the total number of purchase orders placed per year is equal to the average order
frequency per item multiplicd by ¥, this formulation is equivalent to minimizing the
tatal investment in inventory subject to the constraint that the total number of annual
purchase orders not exceed NF. We have found it easier to think in terms of average
order frequency, however, and therefore we state the problem in this way.

4Rpeall that in Part | we criticized the fixed-order-cost assumption for production systems because it
frequently acts as a proxy for a capacity constraint, which changes over time and cannot be determined in
advance of the schedule. However, for purchasing systems, capacity may not be a consideration, and
therefore a fixed order cost is a much more plausible modeling assumption.
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To formulate a mathematical model, we recall that if the order quantity for part j is
@ ;, then the average invertory of part j (in units} is Q;/2, and hence the annual holding
cost is h; Q; /2. The order frequency of part j is D;/Q;. Therefore, total holding cost
is Z?;l h;Q;/2, and the average order frequency is 1/N, Z;”:J D;/Q;. Thus, we can
express the problem to minimize total holding cost subject o an average order frequency
of no more than # as

N
N h . .
Minimum ziiz-‘ig’i (17.2)
N
1 S\ D
Subjectto: =y L <F 17.3)
N4,

Notice that if we replace holding cost /; by unit cost cj, then the problem becomes
one of minimizing total inventory investment subject 10 a constraint on average order
frequency. Some decision makers find it easier to think in terms of inventory investment
rather than holding cost. However, the two are equivalent (i.e., result in the same lot
sizes) if h; = ic;, where i is an interest rate. So the decision of whether to use holding
cost of inventory investment as the objective is generally just a matter of 1aste.

This formulation is an example of a nonlinear programming problem. The stan-
dard technique for solving such problems is the method of Lagrange, which converts
a constrained optimization problem to an unconstrained one by attaching a penalty to
violation of the constraint and incorporating it into the objective (Bazaraa and Sheity
1979). While this sounds complex, it really boils down to finding a fixed setup cost
for (17.1) that causes constraint (17.3) to be satisfied. We do this by an iterative search
method like the following.

Algorithm (Multiproduct EOQ Model)

Step 0. Pick an initial value for A.
Step 1. Use A in Equation (17.1) to compute the lot sizes O forallj=1,..., N.
Step 2. Compute the resulting order frequency:

1\ D
FlaAy=—» -+
(4) NJ_Z:;Qj

Step 3. If F(A) = F, stop.® Else,
If F{A) < F, decrease A
If F(A) > F,increase A
and go to step 1.

The increases and decreases in A can be made by trial and error, or somne more
sophisticated search technique, such as interval hisection.® As long as the method we
use takes smaller and smaller sieps when we near the optimum, the procedure will
eventually converge.

5Since F(A) is a continuous number, it will never equal F exactly. So we typically stop when F(A) is
within some small prespecified tolerance of F. ’

$Basically, bisection starts with two peinss for A, an upper bound thar is too high (i.e., causes F{A) < F)
and a lower bound that is too low (i.e., causes F(4) > F), and tries the midpoint between them. If it is oo
high, then the midpoint replaces the upper bound; if it is too low, it replaces the lower bound. The gap
between the lower and upper bounds will steadily decrease. When it is sufficiently smalt (i.e., below some
specitied tolerance), we stop.



592

Part Ill  Principles in Practice

1,..., N. We also get the appropriate fixed order cost A. An alternate interpretation of
this cost is the decrease in total inventory holding cost per unit decrease in the average
order frequency. If we knew how much we were willing to pay in annual holding cost
to decrease the average order frequency by one order per item per year, then we couid
immediately use this value in Equation {17.1) to compute the optimal order quantities.
If, as is often the case, this is a difficult number to come up with, we can run the above
algorithm for a variety of values of F and piot the optimal holding cost (or inventory
investment, if we use c; in place of h;} versus average order frequency. Such a curve
would represent the multiproduct analog to Figure 2.3 for the single-product case.

We could directly implement the optimal lot sizes @, j = 1, ..., N, computed via
the above procedure. However, if there are savings to ordering parts simultaneously, it

At the end of this procedure, we will have the optimal order quantities @7, j =

_may make sense to round the order intervals associated with these lot sizes to powers of

two, We do this by noting that the reorder interval for part i is given by

T = 9;;
J Dj
If we round the 7 values to the nearest power of two, then, as we discussed in Chapter
2, orders of different parts will tend to “line up.” Of course, this rounding will affect
both inventory and average order frequency. If we round the T} values to Tf values, then
our order guantities become

Q’; = T; D ;]
Hence, the actual inventory holding cost will be

N
Ei =f Cj Q;
2
and the actual average order frequency will be

1 < D
Nl
i=f o J
If the increase in inventory investment relative to the optimum is too great, or if the
average order frequency is too much larger than the target level F, then the benefits from
power-of-two rounding may not justify their costs. If the difference between the actual
solution and the optimum is slight, then such rounding is probably worthwhile.

Example:
To illustrate the above procedure, we consider a very simple four-part example with data
given in Table 17.1. The objective is to minimize average inventory investment subject
to an average annual order frequency of F = 12 (i.e., once per month). Note that since
the objective is average inventory investment, we use a holding cost rate equai to the unit
cost h; = c;.

Table 17.2 summarizes the output of the above procedure applied to this example.
The rightmost column in this table gives average inventory investment for each set of
order quantities, which is calculated as

Z.~= ;€05
2
To initiate the procedure, we begin with A = 1. As shown in Table 17.2, this results
in an average order frequency of 96.85, which is much too high. Therefore, A must
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TabLE 17.1 Input Data for
Muitipart Lot
Size Example

Part f D; c;
1 1,000 100
2 1,000 10
3 100 100
4 104 10

TasLE 17.2 Calculations for Multipart Lot Size Example

Inventory
Iteration A 01(A) | 22(A) | Qi(4) | Q4(4) | F(A) | Investrnent ($)
1 1.000 4.47 14.14 1.41 4.47 96,85 387.39
2 100000 | 4472 | 14142 | 1414 | 4472 9.68 3,873.89
3 50000 | 31.62 | 10000 | 1000 | 31.62 | 13.70 2,739.25
4 75000 | 3873 | 12247 | 1225 3873 | 11.18 3,354.89
5 62.500 | 3536 | 111.80 | 11.18 | 3536 | 12.25 3,062.58
6 68.750 | 3708 | Li7.26 | 11.73 3708 | 11.68 3,212.06
7 65.625 | 3623 | 11456 | 1146 | 3623 | 11.96 3,138.21
8 64.065 | 3580 | 11319 | 1132 | 3580 | 1210 3,100.68
9 64.845 | 36.01 | 113.88 | 1139 3601 | 1203 3,119.50
10 65235 | 3612 | 11422 | 1142 36.12 | 11.99 3,128.87
1 65.040 | 3607 | 11405 { 1141 3607 | 1204 3,124.19
12 65.138 | 3609 | 11414 | 1141 3609 | 12.00 3,126.53

be increased. So we try A = 100. As we would expect, since we are penalizing
frequent orders heavily, this results in much higher order quantities, and an average
order frequency falls to 9.68. Since this is too low, we now have A bracketed. We know
that the optimal value of A (the one that achieves an order frequency of 12) is between
1 and 100. So we try A = 50. Since this results in an order frequency of 13.70, it is
too low. So we try A = 75. This decreases the order frequency to 11.18. Proceeding
in this manner, the procedure eventually converges to the desired order frequency. Note
that all the calculations involved are easily handled in a spreadsheet, provided that the
number of parts is not too large. Indeed, it is a simple matter to use Goal Seek or Solver
in Excel to search out the proper value of A.

The last line in Table 17.2 gives us the result from the multipart lot-sizing procedure.
These numbers tell us that the optimal lot sizes for parts 1,2, 3, and 4 are 36.09, 114.14,
11.41, and 36.09, respectively, Notice that the lot size of part 2 is larger than that of
part 1, and the lot size of part 4 is larger than that of part 3. This is because part 2 is
less costly than part | and part 4 is less costly than part 3. Intuitively, optimal lot size is
decreasing in cost.

Furthermore, the lot size of part | is larger than the lot size of part 3, even though
their costs are the same. This is because the demand is greater for part 1. The same
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relationship holds between parts 2 and 4. As we would expect, lot size is increasing in
demand rate.
Finally, notice that parts | and 4 have the same lot size. This 1s because

Dy Dy

5] C4
From expression (17.1), it is apparent that Jot size depends on D; and A (and hence ¢;)
only through their ratio.

The output from the procedure also tells us that A = 65.138. This gives us an
estimate of the cost (in inventory investment) of changing the average order frequency.
Increasing the order frequency by one (to 13 per year) would decrease inventory invest-
ment by $65.14, while decreasing it by one (to 11 per year} would increase inventory
investment by $65.14. However, we must note that these costs are only approximate,
since the true cost function is nonlinear. In reality, increasing the order frequency by
one will save less than $65.14, while decreasing it by one will cost more than $65.14.
However, it does give the user a rough idea of the inventory value of more frequent
orders.

The resulting value of A also serves as a reality check on our original choice of
order frequency target. If the actual cost of placing an order is less (more) than $65.14,
then we should have chosen an order frequency larger (smaller) than 12 times per year.
The point is that if we have some idea of what A and F should be, but aren't completely
certain about either, then we will get a better solution by cross-checking them against
each other and adjusting until both are reasonable.

We can be more exact about the tradeoff between inventory investment and order
frequency. Notice that if we keep track of the inventory investment, as we did in Ta-
ble 17.2, then each choice of A gives us an inventory investment/order frequency pair.
Hence, by varying A over a sufficiently wide range, we can generate a graph of inventory
investment versus average order frequency. We do this in Figure 17.2. Notice that the
inventory investment falls very rapidly as we increase the number of orders per year
from zero to five. However, increasing the order frequency above this, and particularly
above 10 per year, has a much smaller effect. This type of diminishing returns is exactly
analogous to the behavior of the single-product model shown in Figure 2.3.

Last, if there are economies to joint orders, we might want to round our order
imervals to powers of two. To do this, we first compute the order intervals:
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T = gi - 2699 _ 0.03609 year = 13.17 days
Dy 1,000

= %f = 111'?)'01; = (1.11414 year = 41.66 days

T = %f = % = 0.11414 year = 41.66 days

TS = g—i = %ﬁ = (.3609 year = 131,73 days

Using days as our base time unis, we choose 7} t be the closest power of two to 13,17,
namely, 2* = 16. We choose 7; and Ty as the closest power of two to 41.66, which is
25 = 32. And we set T equal to the clesest power of two to 131.73, which is 27 =128,

These order intervals translate to order quantities as follows:

D\T! 16

Q= % = 1,000 x = = 43 .84 units
Qs = % = 1,000 x % = 87.67 units
Q= 22:5 =100 x 3—% = 8.77 units
o, = %%i = 100 x % = 35.07 units

Substituting these into the expressions for inventory investment and order frequency

yields

4 |
108
Inventory investment = é—’%f——i = $3,243.84

4
1 D;
Average order frequency = o Z -Qi = 12.12

lr.
j=1 %

Since we presumably save some effort by combining orders due to the power of two
order intervals, it may be acceptable to have a slightly higher average order frequency
than the originally desired level of 12. Notice, however, that the inventory investment
increases from $3,126.53 to $3,243.84, This increased cost must be offset by the benefits
of joint replenishment {(e.g., fewer separate purchase orders to issue, truck sharing) for

the powers of two policy to be worthwhile.

17.4 Managing WIP

The first thing to note about managing WIP is that Little's law

WwIP
CT= —
TH

implies that for fixed throughput, reducing WIP and reducing cycle time are directly
linked. Therefore, the measures we will suggest to increase the efficiency of WIP are-

precisely the same as those one would use to reduce cycle times.
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The sccond important point concerning WIP management is that, as we pointed out
earlier, the bulk of work-in-process in most production systems {i.e., disconnected flow
tines) is in queue (caused by variability and high utilization}, waiting for batch (caused
by batching), or waiting to match {caused by lack of synchronization). Thus, WIP
reduction programs should be dirccted at (judiciously) lowering utilization, smoothing
out variability, reducing batching, or improving synchronization,

In the following sections, we review techniques for reducing WIP in queue, waiting
to move, and waiting to match.

17.4.1 Reducing Queuncing

Recall that for a single-machine workstation, with mean processing time ¢,, coefficient
of variation of processing times «,., coefficient of variation of arrivals ¢, and util*=~tion
u, cycle time can be approximated by

202
CT ~ (C——C-) i) PR (17.4)
2 1—u
s0 by Little’s law and the fact that u = raf,, where r, is the average arrival rate to the
workstation,
2,2
WIP=CT-ram(f£gfi)(1” )u+u (17.5)
- U

Thus, to reduce WIP and CT at the workstation, we can reduce the variability of arrivals
to the station (¢2), the effectivc variability of the processing times at the station (c2), or
utifization ().

(Generic options for achieving these include the following:

1. Equipment changes/additions. The simplest way to increase capacity, and
hence reduce utilization, of a station is to replace machines with faster models or angment
the current machines with additional parallel capacity. While hardly imaginative, this
option can be effective. However, to choose good equipment additions, we must consider
the purchase cost, the effect on the capacity and variability at the station, and downstream
(fiow) variability effects. We discuss a framework for this in Chapter 18.

2. Pull systems. As we saw in Chapter 10, a pull system will achieve the same
level of throughput with a lower average WIP level. The reason is that the releases to
the line are coordinated with the status of the line (i.e., work is allowed to enter the line
only when there is space for it), This is something like reducing ¢, to the front of the
line, but not quite. What pull systems really do is to tie releases to the line to completion
of work within the line. Most importantly, they establish a WIP cap, which prevents
the WIP level in a line from exceeding a specified quantty. Thus, pull systems can
mandate a WIP reduction. The challenge is to achieve the WIP reduction without a loss
in throughput. This requires making some of the other variability reduction or capacity
enhancement changes suggested here. *

3. Finite-capacity scheduling, If releases to the line are made without adequate
attention to capacity {e.g., as in MRP), then WIP explosions at bottieneck resources
are possible. As Chupter |5 described, a finite-capacity scheduling system can help
regulate releases in accordance with system capacity. Although this does not tie re-
leases to production quite as strongly as a pull system (a pull system links releases to
actual production, while a finite-capacity scheduler links releases to expected produc-
tion), finite-capacity schedulers can substantially reduce WIP by preventing systematic
overreleasing 1o the line. Ideally, one should supplement a finite-capacity scheduling
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system with a pull system, in order to keep the system under control when conditions
depart from the schedule.

4‘. Setup reduction, All other things being equal, reducing setups will increase
effective capacity, and therefere reduce utilization, of a workstation. However, typically
when we reduce setups, we run smaller lots and hence perform more setups. Even
if the increase in the number of setups completely offsets the capacity increase, as we
discussed in Part II, shorter, more frequent setups will decrease effective variability at the
workstation {c,). This will serve to reduce queueing at the workstation and downstream
(i.e., because flow variability will also be reduced). Moreover, as we noted earlier, if
we can produce smaller batches, we will have less need to store excess production as
finished goods inventory.

5. Improved reliability/maintainability. Increasing ¢ither the mean time to failure
or the mean time 1o repair increases the availability of a machine and hence augments
its capacity. In addition, decreasing the mean time to repair can significantly reduce the
effective variability of the machine (¢.). Thus, these types of improvement can reduce
queueing at a workstation and, hy lowering downstream flow variability, alse reduce
quenteing at subsequent stations.

6. Enhanced quality. As we noted in Chapter 12, reducing either rework or yield
loss can substantially increase capacity and reduce effective variability. Because of this,
quality improvement efforts can be major components of a WIP/cycle time reduction
program.

7. Floating work. Cross-trained workers who can move to where capacity is re-
quired can increase the effective capacity of the line. Cross-training also tends to give
workers a more global picture of the line and gets more brains thinking about the prob-
lems faced at each station in the line. In manual assembly systems, paced or unpaced,
the effects of floating work can be achieved by designating certain tasks as “shared.”
For example, a particular component might be assigned to be attached by either worker
A (upstream) or worker B (downstream). Whenever worker A is keeping up with the
line, she will attach the shared component. However, if worker A gets behind (e.g., a
quality glitch slows her down), then she can pass the component to worker B for him to
attach. In general, floating work schemes only work effectively if the incentive system
encourages cooperation toward a linewide goal (e.g., throughput).

Finally, we make the same point we made with regard to ABC classification of
purchased parts: Not all WIP need be treated equally. It may make perfect sense to
stratify parts by volume. High volume parts could be assigned to lines with few part
families, and hence few setups, where the steadiness of flow facilitates use of a highly
efficient pull system. Low volume parts could be produced in a job shop envircnment,
5o that high flexibility purchased at the cost of low efficiency would only affect a minor
portion of the overall business. This type of focused factory strategy can greatly simplify
management of a factory with many different parts.

17.4.2 Reducing Wait-for-Batch WIP

Batching for process reasons may be unavoidable (e.g., a batch bum-in operation that
requires 24 hours may only be able 1o provide sufficient capacity when large batches
are processed together). Batching for move reasons is another matter. Anything that
enables jobs to move from one workstation to the next in smaller batches, and hence
with less waiting, will clearly reduce WIP and cycle time. Specific approaches for doing
this include these:
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1. Lot splitting. Remember that process lots and move lots do not have to be
the same. Even if long setup times at a workstation that processes jobs one at a time
necessitate large batches for capacity reasons, there is no need to wait until the batch
is complete before moving some of the jobs to the next workstation. For instance, a
machining center that produces crankshafts in lots of 10,000 (i.e., before setting up to
produce a different type of crankshaft) might send them to the subsequent finishing
process in lots of 100. In theory, the crankshafts could even be moved one at a time from
machining to finishing. The limiting factor is the amount of time required to move the
material.

2. Flow-oriented layout. More frequent moves can be facilitated by the plant
layout. One of the advantages of a cellular layout is that workstations are in close
proximity so that material can move easily between them. Material handling systems
(e.g., conveyors, AGVs) can also facilitate small lot transfer between workstations, even
if they are not physically close to one another.

3. Cart sharing. In workstations with multiple parallel machines producing identi-
cal product, sharing incoming and/or outgoing carts (or whatever containers are used to
move jobs between workstations) can reduce the amount of WIP waiting before and after
the workstation. For instance, Figure 17.3 shows 12 machines filling different numbers
of outgoing carts (we have not explicitly represented incoming carts}. On average, the
number of completed parts waiting to be moved to the next workstation in the system
with one outgoing cart will be one-twelfth that in the system with 12 outgoing carts.
Notice, however, that this assumes that the machine operators spend the same amount
of time moving completed parts to the carts in both systems. If, because of geography,
operators must walk farther to bring parts to the single shared cart than to put them
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en individual carts in the 12-cart system, then cart sharing can lengthen the effective
processing times. Depending on the system, the cycle time reduction from cart sharing
might offset that from the capacity decrease. However, in general, cart sharing typically
makes sense only where the time and inconvenience are slight. This consideration might
make the three- or four-cart arrangement the most practical option for the 12-machine
workstation in Figure 17.3.

17.4.3 Reducing Wait-to-Match WIP

At assembly stations, all subcomponents must be available in order for the assembly
operation to occur. We have already discussed the problem of managing purchased parts
feeding an assembly process in this chapter and in Chapter 12, so we will only consider
the situation where subcomponents are produced on different fabrication lines within the
plant.

Ideally, we would like to release wortk orders for the various subcomponents and
process them in the fabrication lines so that they arrive at assembly at exactly the same
tire, in close coordination with the final assembly schedule. Variability generally makes
this impossible, but there are things we can do to improve synchronization:

1. Pull system. As we know from Chapter 14, a pull system, and 2 CONWIP
system in particular, will naturally synchronize releases into the fabrication lines with
final assembly. If fabrication lines are of different length (i.e., in terms of the time
required to traverse them), then different WIP levels (card counts) will be needed. This
will mean that releases into the fabrication lines at the same time will not necessarily
comespond to the same finished product. However, if the WIP levels in the fabrication
lines are set appropriately, subcomponent arrivals to assembly will be synchronized.

2. Common work backlog. The above CONWIP scheme for coordinating re-
leases with final assembly will only synchronize arrival of subcomponents to assembly
if the release sequence is not scrambled in the fabrication lines. If, for instance, local
dispatching rules such as shortest processing time (SPT) are used at individual work-
stations, then jobs can pass one another and synchronization will be lost. Even if we
use first-in, first-out (FIFQ) at the workstations in the fabrication lines, passing is still
possible at multimachine stations. Thus, the way to maintain gynchronization with the
finat assembly schedule is to follow a common work backlog at each workstation in
the fabrication lines. This backlog simply lists the jobs in order of the final assembly
sequence. As long as the fabrication workstations process jobs in the order specified
by the backlog, the jobs will arrive synchronized to assembly. If the backlog must be
routinely viclated (e.g., because of batching or quality problems), then a buffer of WIP
will have to be maintained in front of assembly to avoid stoppages due to “out-of-sync™
arrivals.

3. Balanced batching. If one fabrication line uses large process lots because of
a long setup, it may be unable to coordinate with the final assembly schedule. There
are three ways to deal with this probiem, (1) Produce well ahead of the final assembly
schedule on this fabrication line, and maintain a subsiantial buffer between this line and
final assembly. (2) Generate the final assembly schedule in accordance with the batching
requirements of the fabrication line. (3) Reduce setup times or augment capacity in the
fabrication line so that smaller lots become feasible and it can be synchronized with
the desired final assembly schedule. The first two are short-term options; the third may
require more time to implement.
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17.5 Managing FGI

Finished goods inventory acts as a buffer between production and demand. As we noted
earlier, such a buffer may be needed to (1) insulate customers from manufacturing cycle
time, perhaps to provide “instant” delivery, (2) absorb variability in either the production
or demand processes, or {3} level out capacity loading (e.g., due to seasonality). These
imply that anything that links production and demand processes more closely will allow
less FGI to be carried. Options for doing this include the following:

1. Improved forecasting. While we don’t want to raise unrealistic expectations for
a forecasting panacea, it is certainly the case that forecasting errors can inflate FGI. If
better techniques for forecasting demand, like the time series methods of Chapter 13,
can reduce the discrepancies between production and demand, then FGI will be reduced.
Despite this fact, there are limits to our ability to predict the future, and so the other
options below may be more promising in most systems,

2. Dynamic lead time quoting. Many systems quote fixed lead times to customers.
However, because plant loading varies over time, actual manufacturing cycle times also
vary over time. Therefore, if we set the fixed lead time such that the fraction of time we
can deliver within this time is reasonably high, then a high percentage of jobs will finish
early. If early delivery is not permitted, these jobs will wait in FGI. We can eliminate this
problem by dynamically quoting customer lead times that are sensitive to plant loading.

For example, we worked with a manufacturer of metal cabinets that published 10-
week fixed lead times in its product catalog. If it had used a dynamic lead time quoting
system, customers who placed orders when the plant was almost empty might have
received a two-week lead time. while customers who placed orders when the plant was
backed up with work might have received a 12-week lead time. Overall, lead times
would be shorter on average, and less product wounld have to wait in FGI for shipment
to attain the same on-time delivery performance.

3. Cycle time reduction, A very effective way to reduce forecasting errors is to rely
less on forecasting. If cycle time (including the entire value-added chain consisting of
time to enter orders, code arders, engineer orders, schedule orders, manufacture products,
deliver preducts, etc.) can be reduced, then work releases can be made closer to their
due dates. Since forecasts tend to grow worse with distance into the future, later releases
have the effect of making the master production schedule more reliable. If cycle times
become short enough, then all releases can be made in conjunction with firm customer
orders and therefore FGI due to forecasting errors can be eliminated altogether. Happily,
all the WIP reduction techniques listed earlier are also cycle time reduction techniques
(Little's law) and therefore are well suited to this purpose.

4. Cycle time variability reduction. Chapter 12 pointed out that if we want to
guarantee a certain level of service, the lead time quoted to a customer is affected by
both the average cycle time and the standard deviation of cycle time (see Figures 12.9
and 12.10). The more varisbility in cycle times, the more safety lead time we must
build into our quotes to ensure a high percentage of on-time deliveries. Higher safety
lead times imply that product will spend more time waiting in FGI, unless early delivery
is permitted. Fortunately. many of the things we can do to reduce average cycle time
(reduce setups, improve reliability/maintainability, implement pull mechanisms, reduce
rework and scrap) also serve to reduce cycle time variance.

5. Late customization. Even if it is necessary to carry inventory in order to provide
short customer lead times, it may not be necessary to carry the inventory in the form of
EGL In some cases, it may be possible to stock the product in semifinished form and
assemble or customize to order. Semi-finished inventory is more flexible, provided it
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can be used to produce more than one finished product, which makes it possible to carry
less total inventory.

For example, a manufacturer of faucet fixtures might offer 20 different models made
up of all combinations of five bases and four handle styles. By stocking the bases and
handles, the manufacturer need maintain only nine different items in stock, instead of
20. Because of variability pooling, it is easier to forecast demand for the nine parts than
for the 20 finished products, and hence less total stock will be required.

As another example, an appliance manufacturer might produce a family of electric
mixers that differ according to accessories (a dough hook might or might not be included),
retail outlet (labels and packaging might indicate a store brand), and market destination
(instructions might be in different languages). By stocking generic families of mixers,
distinguished by color of plastic parts, say, the manufacturer could quickly label and
package mixers to supply demand for many different finished products. Under this
strategy, forecasts would only have to be accurate at the family level, so FGI due to
forecasting errors could be considerably reduced.

The potential drawbacks to this type of strategy are that (1) customer lead time is
not reduced as much as if FGI is stocked in finished form, which could present a problem
if the competition stocks at the FGI level, and (2) storage of semi-finished products can
be difficult; for example, dirt and brezkage might be a problern if mixers are not boxed.

The ability 1o store product at the semifinished level can also be a function of product
design. For instance, the manufacturer of institutional cabinetry mentioned earlier had
10-week lead times in large part because of its large product line with each product built
from scratch (i.e., sheet metal). A competitor was able to offer four-week lead times by
offering a smaller product line built around a small set of standard modules (stocked) with
different paint colors, face-framing options, and features (faucets, electrical hookups,
glass doors, etc.) to allow them to meet customers’ needs. Because customers were
typically architects who were also frequently behind schedule, responsiveness was highly
valued in this market. and the competitor was clearly gaining the upper hand as a result
of the shrewd product design strategy.

6. Balancing labor, capacity, and inventory. In many markets, product is produced
during periods of Jow demand and held as FGI to meet demand during peak periods.
While this may be the best option in some cases, it is by no means the only way to address
the problem of seasonal demand. An alternative approach may be to vary the size of
the workforce, either by using temporary workers during the peak season or by pairing
the product with one with an offset peak (e.g., Jawnmowers with snowblowers) and
transferring workers between lines. Another—heretical, to most traditional managers—
option is to maintain enough excess capacity to meet peak demand without building
inventory. When the costs of carrying FGI, obsolescence, and poor customer service
due to forecasting errors are considered, it is possible that these other options may be
more economical than building large stores of FGL. At the very least, it may make sense
to use a combination of approaches, such as a limited inventory buildup, coupled with
some excess capacity and some floating labor.

17.6 Managing Spare Parts

Managing spare parts is an important component of an overall maintenance policy, which
can be a major determinant of operational efficiency in a manufacturing system. Because
of its importance and complexity, a wide variety of spare parts practices are observed
in industry (see Cohen, Zheng and Agrawal 1994 for a benchmark study). We will not
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attempt a survey of these practices. Instead, in this section, we establish a framework
for evaluating spare parts inventories and build on the models from Chapter 2 to develop
appropriate tools.

17.6.1 Stratifying Demand

There are two distinct types of spare parts, those used in scheduled preventive mainte-
nance and those used in unscheduled emergency repairs. For instance, a filter may be
used in a regular monthly maintenance procedure, while a fuse is replaced only when it
fails. The two types of parts should be managed differently.

Scheduled maintenance represents a very predictable demand source. Indeed, if
maintenance procedures are followed carefully, this demand may be much more stable
than customer demand for finished products. Thus, standard MRP logic is probably
applicable to these parts. That is, starting with projected demand, we net against current
inventory (and scheduled receipts) and use a lot-sizing rule (lot for lot, fixed order quan-
tity, etc.), to generate planned order receipts, and then back out according to purchasing
lead times to generate purchase orders. 1f the parts are produced internally, we can sub-
stitute whatever scheduling procedure is used in place of the fixed purchase lead times
to generate a production schedule. In cither case, the stable predictable nature of the
demand process makes these preventive maintenance parts relatively easy to manage.

Unscheduled emergency repairs are by definition unpredictable. Therefore, using
MRP logic for these parts tends to work poorly. We address approaches for maintaining
sufficient safety stock to support timely repair of equipment in the following section.

17.6.2 Stocking Spare Parts for Emergency Repairs

For spare parts whose demand is unpredictable, the challenge is to provide high service
in a cost-efficient manner. Because demand is uncertain, the (Q, r) model we discussed
in Chapter 2 is a potential tool for examining this tradeoff. To apply it, we must decide
how to represent service in a multipart environment.

In spare parts systems, service is related to the availability of the machines being
supported. Moreover, because a machine that is down for lack of a $2 fuse is just as
unavailable as one that is down for lack of a $3,000 computer unit, it is often reasonable
to assume that the cost of not having a part on hand is the same for all parts. Therefore,
if we can specify either the backorder cost or the stockout cost, we can analyze the parts
separately using one of the models of Section 2.4.3.

However, as we have noted before, backorder and stockout costs are often difficult
to estimate. In the case of spare parts systems, the reason is that the cost of a part
shortage depends on the cost of the machine outage caused by it, which in tum depends
on the cost of customer delays caused by the outages. Because of this, it is frequently
attractive to think of the problem in terms of a service constraint rather than a service cost.
Fortunately, there is a close connection between the cost and constraint formulations.

To adapt the (@, r) model to the multiproduct case, we make use of the same notation
as in Section 2.4.3 with a subscript j to represent parameters for part j, j =1,..., N,
s0 that

N = total number of distinct part types in system
D; = annual demand (units per year) for part j
¢; = replenishment lead time (days) for part j



Chapter 17 Supply Chain Management 603

#; = expected demand during replenishment lead time for part §
(6, = D,£,/363)
a, = standard deviation of demand during replenishment lead time for
part j
p;(x) = probability of exactly x demands during replenishment lead time
for part j (probability mass function)
G,(x} = X} .o P4(¥), probability that demand for part j during
replenishment lead time is less than or equal to x (cumulative
distribution function}

A = setup or purchuse order cost per replenishment for any part
{dollars)

¢, = unit production or purchase cost of part j (dollars per unit)
h; = anpual unit holding cost for part j (dollars per unit per year)

k = cost per stockout for any part {dollars)

b = annual unit backorder cost for any part (dollars per unit of
backorder per year). Note that failure to have inventory available 1o
fill a demand is penalized by using either k; or &; but not both.

B = desired total backorder level

S = desired average service level

F = desired average order frequency

Q; = order quantity for part j (decision variable}
r; = reorder point for part j (decision variable)
F;(Q;) = order frequency (replenishment orders per year) for part j as a
function of @,
§,(Q;.r,) = fill rate (fraction of orders filled from stock) of part j as a function
of @, and r,
B;(Q,.r,) = average number of outstanding backorders for part j as a function
of @; and r;
1,(Q,.r;) = average an-hand inventory level (units) of part j as a function
of @, and r;

With this notation, we can represent the total cost in two ways., We develop both,
along with their associated constraint formulations, below.

Backorder Model. We begin by characterizing service by means of the average back-
order level. We can formulate a cost function representing the sum of the setup plus
backorder plus hoiding cost as

N
Q. ry = Z[AF}(QJ;) + 6B Q)+ h, (0, ] (17.6)

j=1

where Q@ = (@, j=1....,N) andr = (r,, j = 1,..., N) represent vectors of the
order quantities and reorder points. Since the cost function ¥, is simply the sum of
separate terms that depend on (Q,, r,) pairs, we can minimize it by mindmizing the
terms for each j separately. But we already did this in Chapter 2. Hence, using the
same approximation we used there (i.., approximating the (Q, r) backorder formula
B;(Q;,r;) by the basc stock backorder formula B, (r;)) leads to the same expressions
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for the optimal order quantities and reorder points:

. [24D;
Q= T‘ (17.7)
. b
G@ry) = bYh, (17.8)

Note that these are the familiar EOQ and base stock formulas. Furthermore, if we assume
that lead time dernand for product j is normally distributed with mean #; and standard
deviation o, then we can simplify (17.8) to

r;=8;+z;0, 179

where z; is the value in the standard normal table such that ®(z;) = bi(b+h;).

Note that these expressions for Q; and r; are sensitive to the differences between
parts. For instance, all other things being equal, a high-cost part (which will have a
higher h; coefficient) will have both a smaller order quantity Q; and reorder point r;
than will a low-cost part. In addition, as we would expect, Q; and r; are increasing in
the demand rate’ D;. In the normal demand case, the reorder point r; will also increase
in the standard deviation of lead time demand provided that z; > 0, which as we noted
in Chapter 2 is true as long as b > h;. Finally, we note that increasing the fixed order
cost A increases all order quantities  ;, and increasing the backorder cost b increases
all reorder points r ;.

If we can specify reasonable values for the fixed setup (order) cost A and the unit
backorder penalty b, we can use formulas (i7.7) and (17.9) to compute stocking param-
eters for the multiproduct (), r) system. However, as we observed in Chapter 2, this is
frequently difficult to do in practice. In production environments, A is often a proxy for
capacity, since the motivation for producing in batches is to avoid capacity losses due
to frequent setups. In purchasing environments where capacity is not a direct concern,
estimating A directly is much easier. But even in this case, estimating the backorder cost
b is problematic, since it involves placing a value on loss of customer goodwill and other
intangibles. For this reason, it is often more intuitive to use a constrained model, When
service is appropriately characterized by the total number of outstanding backorders (for
all part types), then we can formulate the problem as:

Minimize Inventory holding cost

Subject to:  Average order frequency < F
Total backorder level < B

We can use an iterative procedure, like that we described for the multiproduct EOQ
model earlier, to solve this constrained problem. The basic idea is to first adjust the fixed
order cost A until the order frequency constraint is satisfied and then adjust the backorder
cost b until the backorder level constraint is satisfied. Note that when we check to see
whether a given set of (Q;, r;) values satisfies the backorder level constraint, we use the
exact formula for computing backorder level, not the approximation we used to derive
Equation (17.8). Also, because the backorder level B;(Q;,r;) depends on both @; and
r;, while the order frequency £;(Q;) = D;/Q depends only on @, it is important to
adjust A first and b second. We state the procedure formally on the next page.

"To see that r; increases in D, note that increasing D; increases 8; and by Equation (17.9) we see that
r; increases in &;.
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Algorithm (Multiproduct (Q, r) Backorder Model)

Step 0. Pick initial values for 4 and b.
Step 1. Use A in Equation (17.7) to compute the lot sizes Q; forall j = 1, ..., N.
Step 2. Compute the resulting order frequency '

N

1 D;
FlA)=— ) L
N ; Q,
Step 3. If F{A) = F, goto Step 4, Else,
If F{A) < F, decrease A
If F(AY > F,increase A
and gotostep ).
Step 4. Use b in Equation (17.9) to compute the reorder points r; for all
J=L.. N

Step 5. Compute the resulting total backorder level
N
Bb) =) Bi(Q,.r)
i=l

Step 6. If B(b) = B, stop. Else,
If B{b) < B, decrease b
If B(b) > B, increase b
and go to step 4.

Stockout Model.  If service is characterized better by average fill rate than by total
backorder level, then we can formulate a cost function representing the sum of the setap
plus stockout pius holding cost as

N
Y(Q.0) =Y {AF(Q) + k1 = $;(Q, rpl +h,1(Q, rp} (17.10)
. j=1

where Q = (@, j = 1,..., N) andr = (r;, f = 1, ..., N) represent vectors of the
order quantities and reorder points. As with the backorder cost model, we can optimize
this separatety for each part j. Using the same approximation we used in Chapter 2 (i.e.,
that we can compute (, using the EOQ model and approximate the fill rate with the
type Il approximation S;(Q,, r;) = 1— B,(r,)}/ Q; and approximate the backorder level
B;(Q;, ;) by the base stock backorder formula B;{r;)} leads to the same expressions
for the optimal order guantities and reorder points:

[24D;
Q) = y ! (17.11)

kD;
If we further assume that lead time demand for product j is normally distributed
with mean ¢; and standard deviation o, then we can simplify Equation (17.12) to
=8 +2;0; (17.13)

where z, is the value in the standard normal table such that ®(z;) = kD;/(kD;+h;0;).
As in the backorder model, these expressions for Q; and r; are sensitive to the
differences between parts. Again, all other things being equal, a high-cost part will have

G(r;‘) = (17.12)
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both a smaller order quantity (7, and reorder point r; than will a low-cost pant. Also,
Q; and r; are again increasing in the demand rate D;, and in the normal demand case,
the reorder point r; will incrcasc in the standard deviation of lead time demand provided
that z; > O. Finally, as we would expect, increasing the fixed order cost A increases all
order quantities @, and increasing the stockout cost k increases all reorder points 7;. A
difference from the backorder model is that the r} values depend on the O values.

If we can specify reasonable values for the fixed setup (order) cost A and the unit
stockout penalty k, we can use formulas (17.11) and (17.13) to compute stocking param-
eters for the multiproduct (Q, r) system. If, for the reasons discussed and in Chapter
2, we are not able to do this, we can use a constrained fommulation. When service is
appropriately characterized by the average fill rate, then we can formulate the problem
as

Minimize Inventory holding cost
Subject to:  Average order frequency < F
Average fill rate > §

We can use an analogous iterative procedure to that used above for the backorder
model. As before, we make use of exact formulas for computing the fill rate in order
to check the fill rate constraint. Again, it is important to adjust A to achieve the order
frequency constraint before adjusting & to achieve the fill rate constraint. The formal
procedure can be stated as follows:

Algorithm (Multiproduct ( 3, r} Stockout Model)

Step 0. Pick initial values for A and k.

Step 1. Use A in Equation (17.11) to compute the lot sizes Q; for all
j=1,...,N.

Step 2. Compute the resulting order frequency

N
1 D
F(A)=~§;—f

Step 3. If F(A) = F, gotostep 4. Else,
If F{A) < F, decrease A
If F{A) > F,increase A
and go to step 1.

Step 4. Use k in Equation (17.13) to compute the reorder points r; for all
ji=1,...,N.
Step 5. Compute the resulting total average fill rate
Yo D805, 1)
N
E_:'=1 DJ‘

Sk =

Step 6. If S(k) = S, stop. Else,
If S(k) « §, increase k
If S(k) > §, decrease k
and go to siep 4.

Multiproduct (Q, r) Example. To illustrate the use of the backorder and stockout
models for the multiproduct (Q, r} problem, and the difference between them, we con-
sider the example in Table 17.3. This table gives the unit cost ¢;, annnal demand D;,
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Tapie 17.3 Cost and Demand Data for Multipart (Q, r) Example

. < D, & b; i
j {$/unit) {unitsfyr} {days) (units) {units)
1 100 1,000 60 164.4 12.8
2 10 1,000 30 82.2 9.1
3 {00 P0G 100 27.4 5.2
4 10 100G 15 4.1 2.0
|

TaBLE 17.4 Results of Multipart Stockout Model { O, ) Calculations

B; i;
Q; kD fkD; + k; Q) r; F, S; (Backorder (lnvelJltory
J | (units) {unitless) {units) | (Owrder Freq.) | (Fill Rate) Level) Eevel)($)
I 36.1 0.666 169.9 2177 0.922 0.544 2,410.66
2 114.1 0.863 92.1 8.8 0.995 0,022 670.24
3 11.4 0.387 259 88 (3.749 G918 312.52
4 36.1 0.666 5.0 2.8 0.983 0.4 189,33
12.0 0.950 1.497 378275

replenishment lead time £, and mean and standard deviation of lead time demand, 8; and
a;, respectively. Our objective is to minimize average inventory jnvestment subject to
constraints on average order frequency and either average fill rate or average backorder
level. Note that since we are using inventory investraent as our objective, we set the
holding cost equal to unit cost: h; = c,.

First we address the problem of setting the ordes quantities Q;. To do this, we
assume a target average order frequency of F = 12 orders per year. Notice that the unit
cost and annual demand data are identical to those in Table 17.1. Hence, we have already
solved this problem because the portion of the multipart algorithms for computing g;
is identical to the multipart EOQ algorithm. From our previous example, we know that
choosing a fixed order cost of A = 65.138 yieids @; values that achieve an average
order frequency of 12 per year. These Q ; values are recorded in Tables 17.4 and 17.5.

This leaves only the problem of computing the reorder points r;. We start by using
the stockout model with a target average fill rate of § = 0.95. Using the above stockout
mode! algorithm, we find that the penalty cost that makes the average fill rate equal 95.
percent is k = 7.213. Table 17.4 reports the resulting critical ratios, reorder points, fill
rates, backorder levels, and inventory levels for each part. It also computes the average
fill rate (95 percent), the total backorder level {1.497 units), and the total inventory
investment {$3,782.75).

Notice that the aigorithm produces a very high fill rate (9.5 percent) for inexpensive,
high-demand part 2, but a low fill rate (74.9 percent) for expensive, low-demand part 3.
Intuitively, the algorithm is trying to achieve an average fill rate of 95 percent as cheaply
as possible, so it makes service high where it can do so cheaply (1.¢., where the unit cost
is low) and where it has a big impact on the overall average (i.c., where annual demand

is high).
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TABLE 17.5 Results of Multipart Backorder Model ((Q, r) Calculations

B F Ij

| em | g r F; s, (Backorder | (Inventory
J (unitless) {(upits) | {(units) | (Order Freq.) | (Fill Rate) Level) LevelX$)
1 0.538 36.1 | 1656 277 0.875 0.974 2,024.77
2 0921 1141 95.0 8.8 0.997 0.010 698.76
3 0.538 14 | 279 3.8 0.840 0.511 671.85
4 0.921 36.1 7.0 2.8 0,998 0.002 209.10

12.0 0.934 1,497 3,604.48

An alternative to characterizing service via fill rate is to use the backorder level
instead. We can do this by using the backorder model algorithm to adjust the backorder
cost & until the total backorder level achieves a specified target. To make a comparison
of the stockout and backorder models, we take as our total backorder target the level that
resulted from the stockout model, that is, B = 1.497 units.

Before going on, we pause to note that establishing a target backorder level is not
always an easy thing todo. Unlike the fill rate, which is expressed in a unitless percentage,
the total backorder level measures the average number of outstanding backorders at any
time. Therefore, one cannot easily transiate a backorder level from one system to another
(e.g., an average backorder level of five might be horrendous service for a system with
few parts and low demand and just fine for a system with many parts and high demand).
One way to place the backorder level in a more intuitive context is to think of it in terms
of the average wait a customer demand experiences as a result of backorders. If we let
W represent the average wait of a demand and D represent the total number of demands
per year, then by Little’s law

B=DxW

or W= B
b
In this example, D = 2,200 units per year, so a backorder level of 1.497 units translates
fo
1.497 —4
W= 2200 = 6.8045 x 107" years = 5.96 hours

This means that on average a part (any part, not just one that encounters a backorder
situation) will experience 5.96 hours of delay due to lack of inventory. Of course, what
this really means is that most parts will encounter no delay, while others will experience
significantly longer than 5.96 hours. But looking at the average delay per part gives the
decision maker a sense of how much disruption is implied by a given backorder level.
Indeed, it is completely equivalent to use hours of delay as the performance target instead
of backorder level in the algorithm—all we have to do is to divide by the demand rate
and multiply by the number of hours in a year.

Now, supposing that the backorder level target of 1.497 is reasonable, we can use
the backorder algorithm to find the backorder penalty that causes total backorders 1o
achieve this level. It turns out that b = 116.50 does the trick. Table 17.5 reports the
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resulting critical ratios, reorder points, fill rates, backorder levels, and inventory levels
for each part. Tt also computes the average fill rate (93.4 percent), the total backorder
level (1.497 units), and the total inventory investment ($3,604.48).

Notice that the algorithm results in low backorder levels for inexpeansive parts 2 and
4, but higher backorder levels for expensive parts 1 and 3. In addition, it tends to have
higher backorder levels for higher-demand parts (i.e., part 1 is higher than part 3, and
part 2 is higher than part 4} because higher demand produces more backorders when all
other things are equal. As did the stockout model, the backorder model places the bulk
of its inventory investment in the expensive, high-demand part 1.

But there are some key differences between the two solutions. Notice that while the
total backorder levels are the same, as we forced them to be, the fill rates and inventory
levels are different. The backorder model achieves a given backorder level with a smaller
investment in inventory ($3,604.48 versus $3,782.75). But it does so at the price of a
lower fill rate (93.4 percent versus 95 percent). If we had used the backorder model to
adjust the backorder cost b to make the fill rate equal 95 percent, it would have resulted
in a higher inventory investment than did the stockout model. The conclusion is that
the stockout model finds a policy that efficiently uses inventory to achieve a given fill
rate, while the backorder model finds a policy that efficiently uses inventory to achieve
a given total backorder level. Thankfully, this is exactly what we would expect them to
do. But since the two models articulate different tradeoffs, it is important that we choose
the right one for a given situation. If fill rate is the right measure of service, the stockout
model is appropriate. If backorder lfevel {or time delay) is a better representation of
service, then the backorder model makes more sense.

Finally, we observe that we can use either the stockout or the base stock model to
generate a tradeoff curve between inventory investment and either fill rate or backorder
level. We do this hy simply varying the stockout cost k or the backorder cost b and
plotting the resulting pairs of inventory investment and fill rate (or backorder level),
Figure 17.4 depicts curves for the previous example for a variety of order frequencies.
Note that, as we expect, inventory investment grows exponentially as we approach a 100
percent fill rate. Furthermore, we can see that the inventory reduction from adding an
additional six replenishment orders per year diminishes as the number of orders increases.
These curves represent efficient frontiers, since they represent the lowest inventory
investment for each order frequency/fill rate pair. A manager can use a graph like this
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to get a feel for how much investment in inventory is required to achieve various service
levels. With this information, he or she can choose a sensible fill rate target. A similar

curve of inventory investment versus fill rate could be generated by using the backorder
model.

17.7 Multiechelon Supply Chains

Many supply chains, including those for spare parts, involve multiple levels as well
as multiple parts, For instance, a retailer might stock inventory in regional warehouses,
which supply individual outlets, which in turn supply customers. Alternatively, an equip-
ment manufacturer that offers service contracts on its products may stock spare parts in
a main distribution center, which supplies regional facilities, which in turn provide parts
to maintain customer equipment. Because of variability pooling, stocking inventory in
a central location, such as a warehouse or distribution center, allows holding less safety
stock than holding separate inventories at individual demand sites. However, holding
inventory in distributed fashion (e.g., at the retail outlets or service facilities) enables
swifter response to demand because of geographic proximity. The basic challenge in
multiechelon supply chains is to balance the efficiency of central inventories with the re-
sponsiveness of distributed inventories so as o provide high system performance without
excessive investment in inventory. Research indicates that doing this by directly apply-
ing single-level approaches to multilevel problems can work peorly (Hausman and Erkip
1994, Muckstadt and Thomas 1980). This motivates us to give multiechelon systems
special treatment.

The complexity and variety of multiechelon supply chains make them very chal-
lenging from an analysis standpoint. Serious study of such systems dates back to the
classical work of Clark and Scarf (1960) and continues today (see Federgruen 1993,
Axsiiter 1993, Nahmias and Smith 1992 for excellent surveys and Schwartz 1981 for an
anthology on the subject). More modern studies place multiechelon inventory manage-
ment in the context of supply chain management (see, e.g.. Lee and Billington 1992;
Fisher 1997: Simchi-Levi, Kaminsky, and Simchi-Levi 1999). Since it is not possible
for us to give anything close to a comprehensive treatment here, we will focus instead
on defining the issues and indicating how some of the earlier single-level results can be
adapted to the multilevel setting.

17.7.1 System Configurations

The defining feature of a multiechelon supply chain is that lower-level locations are
supplied by higher-level locations. However, within this framework there are many
possible variations, and, if we allow transshipment between locations at the same level
(c.g., regional warehouses can supply one another), then the very definition of a Jevel
becomes hazy. In short, multiechelon systems can be extremely complex.

For the purposes of our discussion, we will concentrate primarily on arborescent
systems, in which each inventory location is supplied by a single source (see Figure 17.5).
In particular, we wilt consider the two-level arborescent system in which a single central
warehouse (depot, distribution center} supplies multiple retail outlets (facilities, demand
sites). We do this because (1) such systems are common in practice; (2) good approximate
models of their behavior exist (see Deuermeyer and Schwartz 1981, Sherbrooke 1992,
Svoronos and Zipkin 1988); and (3) approaches to the two-level problem can be used as
building blocks for developing approaches to more complex multileve] systems.
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Before we move on to analysis, however, it is impartant to point out that the system
configuration itself is a decision variable. Just because a system is currently configured
using a three-level arborescent structure does not mean that this must always be the
case. Indeed, determining the number of inventory levels, the locations of warehouses,
and the policics for interconnecting them can be among the most important logistics
decisions a firm can make about its distribution system. Even though these systems
present challenging problems, it is better to address them openly than to miss significant
opportunities because the status quo is viewed as immovable.

As an example of this type of rethinking the system configuration, we offer the case
of an equipment manufacturer with whom we are familiar. This firm offered service
coniracts on its equipment (e.g., a guarantee of a maximum number of hours of downtime
per month) and stocked spare parts to suppert the maintenance process. These parts were
stocked at three Jevels: at a main distribution center, at regional facilities, and at customer
sites {for customers whose service contracts specified it). Virtualiy all shipments from the
distribution center to facilities were made via overnight mail (except for one facility that
was close enough to the distribution center for the maintenance personnel to physically
pick up parts needed for repairs). Maintenance personnel replenished on-site inventories
from the facilities. Roughly one-half of the total inventory in the system was held at the
distribution center, with the remainder in the field (i.c., at facilities and sites}.

This configuration raises an obvious question. Why stock parts at a distribution
center at all?® A facility can receive a part overnight equally well from the distribution
center or from another facility. (Indeed, we discovered that the facility managers had an
informal system of getting parts from one another via overnight mail when the distribution
center was out of stock.) Thus, it might be possible for the distribution center to divide its
inventories amang the facilities. This would place the inventory geographically closer to
the demand sites and therefore make it less likely that customers with broken machines

would have to wait avernight for a crucial part. Moreover, if a facility lacked a part,
it could still get it overnight, from another facility instead of the distribution center,
provided that some facility in the system had the part in stock. The distribution center
would cease 1o be a physical stocking site and would become the logical purchasing
ageni {i.e., to order parts from vendors or to be manufactured internally) and coordinating

842 are indebted to Professor Yehuda Bassok for pointing out this “obvious™ guestion 1o vs.
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mechanism (i.e., by maintaining the information system that kept track of the location
of the inventory in the system). The net result would be that for the same total amount
of inventory in the system, customers would receive better repair service. This kind of

bold reconfiguration might well offer greater overall benefits than detailed optimization
of the existing system.

Performance Measures

To make design decisions or develop a model, it is esseptial that desired system per-
formance be specified in concrete terms. A host of measures can be used, including
these:

1. Fill rate is the fraction of demands that are met out of stock. This could apply at
any level in the system. It is important to remember, however, that a measure applied to
higher levels (e.g., the central warehouse) is only a means to an end. Itis the performance
of the low levels that actually service customers that determines the ultimate performance
of the system.

2. Backorder level is the average number of orders waiting to be filled. This
measure applies to systems where backordering occurs (¢.g., spare parts systems, where
a demand must eventually be filled whether or not the part is in stock at the time of the
demand). As we noted earlier, backorder level is closely related to the average backorder
delay, since we can apply Little’s law to conclude
Average backorder level

Average demand rate
For instance, if a particular part has an annual usage of 100 parts per year and the average
backorder level is one part, then the average delay seen by a part (any part, not just those
that get backordered) is 1713_0 year, of 3.65 days.

3. Lost sales is the number of potential orders lost due to stockout. This measure
applies to systems in which customers go elsewhere rather than wait for a backordered
item (e.g., retail outlets). If every demand that encounters a stockout situation is lost,
then the expected lost sales per year is related to fill rate by

Average backorder delay =

Lost sales = {1 — Fill rate} x Average demand rate

For instance, if the fill rate for a given part is 95 percent and annual demand is 100 parts
per year, then (1 — 0.95)(100) = 5 parts per year will be lost due to stockout.

4, Probability of delay is the likelihood that an activity (e.g., 2 machine repair,
shipment of a multipart customer order) will be delayed for lack of inventory. This
measure is often used in systems where high reliability is required (e.g., aircraft mainte-
nance). In general, the probability of delay in a multipart, multilevel system is a function
of the fill rates of the various parts, although depending on the manner in which parts are
demanded together (e.g., used on the same repair or customer order), this dependence
can be complex {see Sherbrooke 1992 for a more complete discussion).

From these discussions we concluge that fill rate and average backorder level are
key measures, since the other measures can be computed from them. For this reason, the
majority of mathematical models either use these measures directly or use cost functions
that rely on them.

17.7.3 The Bullwhip Effect

Animportant issue that arises in multiechelon supply chains is that of channel alignment,
This refers to the coordination of policies between the various levels and can involve

e ———
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information sharing, inventory contrel, and transportation, among other management
decisions. Because there are so many possible decisien variables, channel coordination
is challenging even when a single firm controls all the levels in the supply chain. When
the levels consist of different firms, the problem becomes even more daunting.

A natural response to the complexity of multiechelon supply chains is 1o treat the
various levels independently. That is, allow each level to use local information to imple-
ment locally “optimal” policies. Indeed, when levels consist of separate firms, such a
strategy is the traditionai defauit. But while natural to implement, the approach of sep-
arating levels can lead to very poor performance of the overail supply chain. The most
obvious consequence of poor channel coordination is inefficiency (i.e., inventory will
be held in inefficient quantities and locations), But a more subtle, though equally dam-
aging, consequence is the bullwhip effect, which refers to the amplification of demand
fluctuations from the bottom of the supply chain to the top.

Figure 17.6 illustrates the bullwhip effect. Even though demand at the bottom of the
supply chain (e.g., retail level) is relatively stable over time, it is quite volatile at the top
level (e.g.. manufacturer level). This phenomenon was observed by Forrester (1961} in
case studies of industrial dynamics models. It was also noted in a behavioral context as
part of the well-known Beer Game, developed at MIT in the 1960s (see Sterman 1989),
More recently it has been observed in practice. For example, Procter & Gamble noted
that retail demand for Pamper brand diapers was fairly stable, while distributor orders to
the manufacturing plant were highly variable. Similar behavior has been observed in the
demand for printers by Hewlett-Packard and for insulin produced by Eli Lilly. As we
know, variability must be buffered——by inventory, capacity, or time. Hence, the bullwhip
effect leads to negative consequences, such as excessive WIP, poor use of capacity, long
customer backlogs, and expediting costs.

Given that the bullwhip effect is real, the key questions are, What causes it? and
What can be done about it? Lee, Padmanabhan, and Whang (1997a, 1997b} classified
the causes of the bullwhip effect into four categories. Following their structure, we wil)
summatize these along with potential remedies,

Batching. At the lowest level of the supply chain (e.g, the retail level) demand is
often steady, or at least predictable, because purchases are made in smail quantities.
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For instance, individual diabetics typically purchase small supplies of insulin, adequate
to meet needs for a few weeks or months. Since the diabetics make their decisions
independently, total retail demand is extremely level over time. This smoothness would
be preserved throughout the supply chain if the retailer replenished its stock directly
by placing lot-for-lot orders on the distributor, and the distributor did the same with
its orders to the manufacturer. However, if retailers and distributors use some kind of
lot-sizing rule (e.g., they follow a (@, r) policy and hence wait until their requirements
justify a replenishment order of size 0), then their demands will be much lumpier than
those at the retail level. Furthermore, if there is synchronization among the decision
makers at a given level (e.g., they all regenerate their MRP systems at the beginning of
the month®), then this lumpiness will be even more exaggerated.

Since the amplification of demand variability is the result of baich ordering, policies
that facilitate replenishment of stock in smaller quantities will reduce the bullwhip effect.
Some options are 1o

1. Reduce the cost of the replenishment order. As we know from Chapter 2, one
of the main reasons for ordering in bulk is the cost of placing a purchase order. One
way to lower this cost is by using electronic data interchange (EDI) to reduce or
eliminate purchase orders. By greatly reducing the amount of paperwork involved,
such “paperless” ordering systems can facilitate more frequent replenishment in smaller
quantities. .

2. Consolidate the orders to fill the trucks. Another reason for ordering in bulk
is the cost of transportation. It is not uncommon for wholesalers or distributors to set
their order quantities equal to a full ruckload. This is because the cost of shipping in
full truckloads is significantly less than that for less-than-full truckloads. However, a
truck need not necessarily be filled with the same product. So one way to reduce order
quantities while retaining the full-iruck cost advantage is to order multiple products from
the same supplier. Alternatively, the replenishment process could be turned over to a
third-party logistics company, which would consolidate loads from multiple suppliers
andfor multiple customers, In either case, the result would facilitate more frequent
deliveries.

Forecasting. Tn supply chains where the levels are managed by independent decision
makers (e.g., they consist of separate companies), demand forecasting can amplify order
variability. To see how, suppose that the retailer sees a small spike in demand. Because
orders must cover both anticipated demand and safety stock, this leads to an order spike
that is larger than the demand spike. The distributor, who forecasts demand on the basis
of retailer orders, sees this spike, adds its own safety stock to the anticipated demand,
and passes on an even larger order spike to the manufacturer. The reverse situation
happens when the retailer sees a dip in demand. Hence, demand volatility increases as
we progress up the supply chain.

The basic reason that forecasting aggravates the bullwhip effect is that each level
updates its forecast on the basis of the demand it sees, rather than on actual customer
demand. Hence, policies that serve to consolidate demand forecasting will reduce the
bullwhip effect. Some options include these:

1. Share demand data. A simple remedy for reducing the amplification effect of
separate forecasting at multiple levels is to use a common set of demand data. In supply
chains owned by a single firm, sharing demand data from the lowest level is conceptualiy

The phenomenon of synchromzed MRP systems causing total demand to spike at centain times is
sometimes called the MRP jitters,
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straightforward (although far from universally practiced). In supply chains involving
multiple firms, it requires explicit cooperation. For example, IBM, Hewlett-Packard,
and Apple all require seli-through data from their resellers as part of their contracis. In
supply chains where the participants make use of ED, information sharing is relatively
simple in principle; the challenge is to achieve the necessary degree of partnering to
make it happen.

2. Vendor-managed inventory, A more aggressive way to ensure that forecasting is
done using low-level demand darta is to have a single entity do it. In vendor-managed
invenrtory (VMI) systems, the manufacturer contrels resupply over the entire chain, For
example, Proctor & Gamble contrels inventories of Pampers all the way from its supplier
(3M) to its customer {Wal-Mart). The fact that alliances using VMI can pool inventory
across levels enables them to operate with substantially less inventory than is nceded in
uncoordinated supply chains.

3. Lead time reduction. The magnification effect of forecasting on orders is a
function of the amount of salety stock a demand spike drives into the system. But as
we saw in Chapter 2, safety stock increases with replenishment lead time. Hence, an
obvious, but potentially significant, way to reduce demand volatitity due to forecasting
js through lead time reduction, Any of the efficiency improvements discussed in Section
17.4 for WiP/cycle time reduction could be practiced at the various levels to achieve
this.

Pricing. Another factor that can cause demand seen at higher levels of the supply
chain to “clump up” into spikes is price discounting. Whenever a product’s price is
low, due to promotional pricing, customers tend to forward-buy {i.., purchase in greater
quantities than necded). When prices return to normal, customers consume the excess
stock and hence order less than normal. The result is a volatile demand process.

Since il is price variation that drives demand volatility, the obvious remedy is to
stabilize prices. Specific policies for supporting more stable prices are

V. Everyday low pricing. The most straightforward way to stabilize prices is to
simply reduce or eliminate reliance on promotions using discounting. In the grocery
industry, several manufacturers have established uniform wholesale pricing policies and
have promoted them via a marketing campaign centered on “everyday low prices” or
“value prices.”

2. Activity-based costing. Traditional accounting systems may not show the costs
of some practices resulting from promotional pricing, such as when regional discounts
cause retailers to buy in bulk in one area and ship product to other areas for consumption.
Activity-based costing (ABC) systems account for inventory, shipping. handling, etc.,
and hence are useful in justifying and implementing an everyday low-pricing sirategy.

Gaming Behavior. One final factor that contributes to the bullwhip effect is the manner
in which customers use their orders in a gaming fashion. For instance, suppose a supplier
allocates a product in short supply to customers in proportion to the quantities they have
on order. Then customers have a clear incentive to exaggerate their orders in hope of
getting more product. When supply catches up with demand, the customers will cancel
the excess orders, leaving the supplier awash in inventory. This occurred more than once
during the 1980s in the computer memory chip market, when shortages encouraged
computer makers 1o order chips from several suppliers, buy from the first one to deliver,
and cancel the remaining orders.

The fundamental issue here is that when gaming behavior is present, customer orders
can provide very bad information to the supplier about actual demand. Alternatives for
reducing the incentive to game orders include the following:



e B et

I T R

616

Part Il Principles in Practice

1. Allocare shortages according to past sales. If a supplier facing a product shortage
allocates its supply on the basis of historical demand, rather than current orders, then
customers do not have an incentive to exaggerate orders in shortage situations.

2. Use more stringent time fencing. Recall from Chapter 3 that frozen zones and
time fences are tools used to place restrictions or penalties on customers for making
changes in orders. If customers cannot freely cancel orders, then gaming strategies
become more costly, Of course, a supplier must decide on a reasonable balance between
responsive customer service and demand stabilization,

3. Reduce lead time. Anothersituation that can lead to gaming behavior occurs when
products involve long-lead-time components. For example, we worked with a printed-
circuit board (PCB) plant that supplied computer assembly (box) plants. To assemble the
circuit boards, the PCB plant had to purchase both the raw cards and the components to
be mounted on them. Some of the components had very long procurement lead times of a
year or more. To encourage its customers to communicate demands early, the PCB plant
had a series of time fences that restricted the changes in order quantity and type at various
lead times prior to the requested due date. However, because the company knew that
long-lead-time parts would be difficult to obtain if demands were increased, customers
had strong incentive to overestimate their requirements, Sure enough, when we checked
the data, we found that at each time fence requirements dropped significantly (e.g., if a
time fence allowed a 15 percent reduction in order quantity without cost penalty, then
many orders were decreased by exactly this amount when they reached that time fence).
The result was to drive excess quantities of the long-lead-time parts into the PCB plaat’s
inventory. One remedy, as suggested above, would be to restrict customers’ ability to
alter orders. For instance, if the PCB plant had a frozen zone longer than the lead time
of ail its components, such gaming behavior would not occur. But of course it is not
reasonable to impose a one year frozen zone on customers. The alternative, therefore, is
to work to reduce lead times of the components so that customers will have less incentive
to try to trick the system into overordering for these parts.

Finally, we observe that a sweeping policy for reducing all the factors contributing
to the bullwhip effect is to eliminate whole layers of the supply chain. This is precisely
what Dell Computer did with its direct marketing system in which computers were sold
by the manufacturer to the customer without the use of resellers. In addition to giving
Dell access to direct customer demand data, it eliminated a whole level of inventory and
hence cost. This strategy played a major part in making Dell one of the most successful
companies in America during the 1990s.

17.7.4 An Approximation for a Two-Level System

We now turn to a specific supply chain problem by considering a two-echelon inventory
system with a single warehouse that supplies a number of facilities, which in turn supply
customer demands. Assume that both warehouse and facilities make use of continuous
review inventory control policies, where the warehouse uses a (Q, r) policy and the
facilities use base stock policies (i.e., they replenish stock one at a time, so in effect they
use (Q, r) policies withr = 1), This type of system makes sense for a spare parts system,
where speed of delivery is crucial and volumes are relatively small. Thus, facilities are
likely to receive shipments of parts from the warehouse on a frequent basis, and one-
at-a-time replenishment is a practical option. This assumption may be less appropriate
for retail systems, where ouilets are replenished less frequently and high volumes make
bulk deliveries necessary. We refer the interested reader to Nahmias and Smith (1992)
for details on modeling retail systems.
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The one-at-a-time facility replenishment assumption implies that demands at the
facilities are passed directly back to the warehouse. This means that if demand for
each part at each facility is distributed according to the Poisson distribution, then total
demand at the warehouse is also Poisson-distributed. {Recall that in Chapter 2 we
observed that the Poisson distribution is often a reasonable modeling assumption for
representing demand processes.) This allows us to take the following approach. First
we analyze the warehouse using a single-level (), r) model, where we fix the service
level {fill rate) and compute order quantities and reorder points for each part. Then we
compute the expected number of backorders outstanding at any point for each part and
use this to estimate the delay that an order from a facility will experience. With this, we
approximate jead times seen by the facility as the expectation of the actual delivery time
from the warehouse plus this delay. Then. using these modified lead times, we apply 2
base stock model to each facility to compute reorder points for each part,

To develop a model, we will make use of the following notation, which is analogous
to that used for the multi-item (Q, r) model above, with additional subscripts m 10
indicate the facility:

N = total number of distinct part types in System
M = number of facilities serviced by warehouse
D; = 3W_| Dju, annual demand {units per year) for part j at warehouse
¢; = replenishment iead time {in days) for part j to warehouse, assumed
constant
8; = expected demand during replenishment lead time for part
j (8, = D,£;/365)

p;j{x) = probability of exactly x demands during replenishment lead
time for part j at warchouse {probability mass function)

G,(x) = Y.5_q p;(¥), probability that demand for part j at warehouse
during replenishment lead time is less than or equal to x
{cumulative distribution function)

W; = expected time an order for part J waits at warehouse due to
backordering
D = annnal demand (units per year) for part j at facility m
£ = lead time (1n days) for facility m to receive part j from warehouse,
assumed constant
8;m = expected demand during replenishment lead time for part
j(8, = D,£;/365)

p,m(x) = probability of exactly x demands during replenishment lead time

for part j at facility m (probability mass function)

G jm(X) = 2 P, (¥), probability that demnand for part j at facility m

during replenishment lead time is less than or equal to x
(curnulative distribution function)
L;m = lead time (including backordering detay) for an order of part j from
facility m to be filled by warehouse, a random variable
¢; = unit cost {(dollars) of part j
Q; = order quantity for part j at warchouse (decision variable)
r; = reorder point for part j at warehouse (decision variable)
rim = reorder point for part j at faclity m (decision variable)
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Rjm = rjm + 1, base stock level for part j at facility m (decision variable
equivalent to 7 j,,)
F;(Q;) = order frequency (replenishment orders per year) for part j at

warehouse as a function of @

8;(Q;,r;) = fill rate (fraction of orders filled from stock) of part j at warechouse
as a function of @, and r;

B;(Q,.r;) = average number of outstanding backorders for part j at warchouse
as a function of @; and r;

{;(Q;, r;) = average on-hand inventory level (in units) of part j at warehouse
as a function of Q; and r;

Warehouse Level.  We can solve the warehouse problem (i.e., compute Q; and r; for
all parts) by using any of the approaches given earlier for the single-level probiem. That
is, we could use a cost model in which we specify a fixed order cost A and either a
backorder cost & or a stockout cost k. Or we could use a constrained model in which we
specify constraints on the average number of orders per year F and either the fiil rate S
or the average backorder level B. Typically, it makes more sense to use a model based
on a backorder cost or constraint, rather than one based on fill rate, since the reason for
holding inventory in the warehouse is to minimize delay seen by the facilities {and hence
the customers).

Regardless of what mode] we use, we will wind up with a set of @; and r; values,
which can then be used to compute F;, S,, B;, and /; forall parts j = 1,..., N using
the functions developed in Chapter 2. We will use these as inputs to the calculations at
the facility level.

Facility Level.  Observe that the expected time (in days) an order from a facility waits
at the warehouse due to backordering is
365B;(Q;,r))
W, — I AR
i DJ

Notice that this is nothing more than an application of Little’s law to the backorders
(i.e., the wait is analogous to cycle time, the backorder level is analogous to WIP, and

the demand rate is analogous 1o throughput). Hence we can estimate the mean effective
lead time {in days) for part j to facility m as

E(Ljyl = Ljm + W; (17.15)

(17.14)

We could just act as though this mean lead time were a constant and use it in the
base stock model to compute performance measures for the facilities. Indeed, researchers
have shown that treating these lead times as if they were equal to their means (that is,
L ;) can yield reasonable results (see Sherbrooke 1992). However, it is clear that L ;» is
a random variable that could exhibit a great deal of variability. When an order from the
facility to the warehouse finds stock available, L jm = £;m. But when an order finds the
warehouse in a state of stockout, then L ;, could be much longer than this. Computing the
exact distribution of the effective lead time seen by a facility is complicated (see de Kok
1993). But we can incorporate the effect of lead time variability in an approximate way.

Technical Note

To approximate the variance of the effective lead time of an order from a facility to the
warehouse, suppose that there are only two possibilities: Either the order sees no delay and
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the lead time is 7 . or it does encounter a stockout delay and has lead time £, + v, where
» i5 a deterministic delay Since the probability of stockout is 1 — , {we will omit the
dependence of §, and B, un @, and r, for notational convenience), we know that

ElL ] = 85i8m + (1 = S0 +3) = £ + (1 — 5, H{W) (17.16)
But in order for this to match Equation (17.15), we must have
W,
Y=1o% a7.1m

To caleulate the variance of L ;,, we first compute
ELL,) =88, + (1 = $)Em + 3 (17.18)
and then

Var(L ) = EIL), | — E{L )

=5,(1 = §,)y*
=Sy 17.19
T-5 7 H719)

The standard deviation of the effective lead time to the facility {in days) is therefore
approximately equal 10

5 (17.20)

We can use E[L ] and ¢ (L ;) In a base stock model for each part j at facility m
to compute a base stock level R p,.

Integrating Levels, There are two issues to be addressed to coordinate the two levels:
the model to use at the warehouse level and the parameters to use in the model. Once
we have chosen these, the above method for modeling the facility level will adjust the
base stock levels for facilities accordingly.

In a multiechelon spare parts supply chain, the most natural model for the warehouse
level is the backorder model. The reason is that service to the customer is closely related
to delay caused by part outages. Hence, the key measure of service at the warehouse is
time delay, which we have seen is proportional to backorder level. Therefore, a logical
choice of a warehouse model is the backorder ( Q, r) model with a constraint on backorder
level. We can use the previously described algorithm to compute the order quantities
Q; and reorder points r; for the warehouse. Equivalenily, we could use the backorder
mode! with a backorder cost b instead of a constraint on backorder level. However, it1s
usually more intuitive to set a target backorder level (or time delay) constraint than it is
to specify a backorder cost.

In other multiechelon supply chains, such as retail systems, customer service may be
more appropriately measured by the fill rate. For instance, if orders that cannot be filled
immediately at the warehouse are either lost or shunted to a (more expensive) third party,
then fill rate makes perfect sense as the service measure at the warehouse. However, we
would need to modify the model to account for lost sales or a different dependence of
the lead times on the warehouse service level.

Once we have a model for the warehouse level, we need to specify its parameters.
If we use the constrained backorder model, then the key decisions concern what to use
for the order frequency target F and the target backorder level B, The order frequency
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target can be selected directly by considering the capacity of the warehouse procurement
system and hence the number of replenishment orders that it can accommodate annually.
Alternatively, we could specify a fixed cost of placing an order A and use this in the
multipart EQOQ formula (17.7) to compute order quantities.

Selecting the target backorder level is more difficult. How many backorders are
allowable at the warehouse depends on what this does to performance at the facilities.
Therefore, it is almost impossible to specify a backorder level target a priori. Instead,
what we should do is to think of this backorder level target as a variable that we can adjust
to seek the best overall system performance. Specifically, we solve the warchouse level
using a given backorder level target. Then we solve the facility level so as to achieve
the desired backorder level or fill rates at the facilities and observe the inventory holding
cost (or investment). Finally we go back and try a different backorder level target at the
warehouse and resolve both levels to see if the same performance at the facilities can be
achieved with a lower inventory cost. Changing the backorder level target will alter the
balance of inventory at the warchouse versus the facilities. The search for a backorder
target that achieves the optimal balance can be automated within a spreadsheet or other
optimization routine.

Example:
We conclude this section with a two-echelon example. Because our purpose is to high-
light the relationship between levels, we will keep things simple by looking at only 2
single part.

Suppose the example we solved for Jack, the maintenance department manager
(Chapter 2, Table 2.6), actually represents the warehouse in a two-echelon supply chain.
Jack stocks spare parts at the warehouse in order to supply various regional facilities,
which provide the parts for use in actual machine repair. Omitting the subscripts f
because this is a single-part example, we see the key data for the warehouse are D=14
parts per year, Q = 4, and r = 3. Recall that we computed the order quantity g=4
and reorder point # = 3 in Chapter 2 by using the backorder cost model (assuming a
fixed setup cost of A = $15 and a backorder cost of b = $100). But we could have
just as easily have used a constrained model with constraints on order frequency ¥ and
backorder level 8.

Now let’s extend this example by looking at a single facility with D, = 7 (i.e., the
facility accounts for one-half of the annual demand seen by the warehouse). From the
calculations in Chapter 2, we know that B(4, 3) = 0.0142 unit, so the average time a
replenishment order waits due to lack of inventory is

W 3658(4,3) _ 365(0.0142)
- D 14
Supposing that the actual delivery time to receive a part from the warehouse is one day,
the expected lcad time for a part is

E[L,]1=1+0.3702 = 1.3702 days

and hence expected demand during replenishment lead time to the facility is

6, = ﬂ%i = 0.0263 unit

Also from our previous calculations in Chapter 2, we know that the fill rate is
5(4, 3) = 0.965. Hence, the standard deviation of replenishment lead time is

{ 8 0.965
= f W= {——A1. = 1.944
o(Lp) iz SW g 0.%5( 3702) days

= 0.3702 day
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Assuming that demand at the facility level is Poisson, we can use Equation (2.58) to
compute the standard deviation of lead time demand as

D \* 7 \?
' = 1] Om faticl L)t = . _ 2 — .
g, +(365) L) 00263+(365) {1.944) 0.166 unit

Note that in this example 6,, = 0.166 is very close 1o /8, = +/0.0263 = 0.162.
The reason is that the inflation factor in Equation (2.58) is relatively small. This implies
that lead time demand is very close to Poisson. Hence, we can use the Poisson formulas
to approximate the service that results from various base stock levels.'® For instance, if
we set the reorder point for the facility equal to r, = 0, then the fill rate is given by

m
Gn(rm) =) p(¥) = p(©®)

y=0

0 g —bm
_ Ope™™ _ 00263

0!
=0.974
If we increase the reorder point to r,, = 1, then service increases to 0.997, So, depending
on the criticality of this part at the facility, it looks as if a reorder point of zero or one
will be appropriate.

17.8 Conclusions

Inventory management is as old as manufacturing itself. Analytical approaches to inven-
tory control date back to the scientific management era (i.e., the early 20th century) and
are among the earliest examples of operations research/management science. Despite
this, the field continues to evolve. Even techniques as old as the EOQ and (Q, r) models
are experiencing breakthroughs (e.g., new algorithms and use in multiechelon supply
chains). Thus, it appears that the final word on inventory and supply chain management
is far from written. The models presented in this chapter provide reasonable approaches
to some settings, but better methods and extensions to new settings will undoubtedly
evolve. This means that inventory will be an area ripe for continual improvement and
that manufacturing managers will need to continue learning new tricks in this important
field.
In the meantime, the following tips are worth keeping in mind:

1. Understand why inventory is being held. Different types of inventory are held
for different reasons, some conscious and others unconscious. Rigorously asking the
question of why each type of inventory is held in a given system can reveal inefficiencies
that are being taken for granted.

2. Look for structural changes. Fine-tuning a supply chain through the use of
sophisticated models is fine. However, really big improvements are likely to require
structural changes. For instance, changing from a strategy of stocking FGI to one of
stocking semifinished product and producing to order might have a dramatic effect on
total inventory investment. Similarly, eliminating the central warehouse and stocking all
spare parts at regional facilities could produce a substantial improvement in customer
service with no increase in inventory. The specific changes that are possible depend on

WSince the actual variability is slightly greater than the Poisson distribution, actual service will be
slightly lower than predicted by the Poisson formulas.
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the system. The key to identifying them is to take for granted as little of the status quo
as possible.

3. Use emprical evaluation procedures, Any model is based on simplifying as-
sumptions (¢.g., steady state, Poisson demand), and input data are approximate at best.
Thus, the best analysis can do is to help us find a reasonable policy (finding the “opti-
mum?” is out of the question) and examine tradeoffs. Given this, we should be careful to
supplement analysis with empirical cbservation and feedback. Examples of parameters
we should monitor include (1) service levels, to compare with those predicted by our
models and to determine whether policy changes are needed; (2) minimum inventory
levels and stockout frequency of stock in raw materials and FGI, to determine whether we
are carrying insufficient or excessive safety stock; and (3) queue lengths and starvation
time at key workstations, to detect excessive or insufficient WIP, Many other measures
may make sense depending on the system. The important thing is to identify a few key
measures and set up an adequate data collection and interpretation system for them.

4. Cycle time reduction is crucial. Little’s law tells us that where there is WIP, there
is cycle time. So WIP reduction and cycle time reduction are virtually synonymous.
But even more importantly, reduced cycle times make it possible to rely less on distant
forecasts in the purchase of components and the scheduling of work. The net result,
therefore, is smaller raw materials and FGI tevels, as well as less WIP,

5. Coordinate levels in multiechelon supply chains. Inventory management grows
more complex when stock is held at multiple levels. In addition to managing each level
efficiently, it is critical to make sure that performance at the separate levels supports
overall system efficiency. The bullwhip effect is an important example of how myopic
control of the separate levels can cause huge problems for the system as a whole. To
avoid these, it is important to analyze the supply chain as a whole, rather than as separate
parts, share common data (e.g., retail demand data) wherever possible, and streamline
the supply chain to avoid unnecessary complexity.

6. Coordinate incentive systems with objectives. Tt is well and good to set up an
inventory management system with specific performance goals in mind. However, any
such system will rely on people to make it work, Therefore, if the reward structure does
not support the system goals, it is unlikely to work. (Recall the personnel law: people,
not organizations, are self-optimizing.) For example, we recently worked for a company
with a multiechelon supply chain in which facilities were evaluated primarily in terms
of customer service but, in the name of inventory efficiency, also had their inventory
levels audited once per month. Predictably, facility managers had a tendency to hoard
inventory (i.e., carry more than the recommended levels) all month. Right before the
end-of-month audit, they would send the excess back to the distribution center. Once the
audit was completed, they would order back up to their “excessive” levels. The effect was
to destroy any balance between inventory and service. Clearly, no modeling or analysis
effort could correct this problem. Only revising the facility evaluation procedure (¢.g.,
by using ratings that combine service with inventory level, where inventory is measured
continuously or randomly in units of dollars) could raticnalize the facility inventory
levels.

Discussion Point

Suppose a manufacturer of electric mixers sells virtually identical models to several
retailers. The major differences between models are the boxes (which are printed with
glossy pictures of the mixer and the house brand of the retail outlet) and the paper
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inserts (which include insiructions and retailer-specific information). Demand is strongly
seasonal {i.e., peaking around Christmas), so the firm follows a strategy of building
inventory {FGI) in the off season. The problem is that while forecasts for total volumes
are typically reasonable, the forecasts for individual retailers can be awful. The result is
that the firm is frequently short of fast-selling models and awash ir slow-moving ones.
What genera) strategies might the firm consider to improve customer service and reduce
FGI?

Study Questions

. Why might the EOQ model be better-suited to purchased parts than to internally

manufactured products?

2. How can cycle time reduction reduce raw materials, WIP, and FGI?

3. In general, WIP reduction techniques are also lead time reduction technigues, but the reverse

10.

11.

is not always true. List some lead time reduction techniques that do not reduce WIP.

. What causes large inventoties of unmatched parts at an assembly operation? What measures

might we consider to address such a situation?

. What is the difference between type I and type Il service? What is the rationale for using

type L service in a ( Q. r)-type model?

. Why do we use approximations for fill rate and backerder level in the aigorithms for

computing @ and r, but check the constraints on these measures against the exact formulas?

. Suggest appropriate performance measurcs for evalvating the efficiency of raw materials,

WIP, FGI, and spare parts in a manufacturing system.

. List some examples of arborcscent multiechelon supply chains. Can you think of a system

that has the reverse of the anborescent structure (i.e., so that many high-level sites supply a
few middle-level sites, which in turn supply a single tow-level site)?

. What are the four muin causes of the bullwhip effect in multiechelon supply chains? Which

causes are likely to have the largest effect in each of the following systems?

a. A consumer products distribution network, consisting of the manufacturing plant,
regional warehouses, and retail outlets.

b, A spare parts network, consisting of a main distnbution center, regional facilities, and
customer sites.

c. A military supply network, consisting of a central warehouse, regional depots, and field
usage sites,

List some supply chains in which holding the bulk of the stock at the demand level (e.g., at

retail outlets) and making use of lateral transshipments might make sense.

What incentive or reward system changes might be required to effectively reconfigure a

multiechelon supply chain to do away with the central warehouse and store all inventory at

regional facilities?

Problems

1.

CMW, a custom metalwork shop, makes a variety of products from three basic inputs—bar
stock, sheet metal, and rivets—which are purchased in bars, sheets, and kits (boxes of 100),
respectively. Projected use and cost of these raw materials for the upcoming year are as
follows:
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Use Cost
Part (1,000 units/yr) ($/unit)
Bar stock 120 40
Sheet metal . 400 2{}
Rivet kits 1000 0.5

The shop estimates that issuing a purchase order for any type of material costs $100 and uses

an interest rate of 15 percent to calculate holding costs,

a. Assuming steady use throughout the year, estimate the purchasing plus holding cost if all
products are purchased four times per year. What happens to cost if we purchase each
product 12 times per year?

5. What are the “optimal” order frequencies if we use the EOQ model separately for each
product? How many total purchase orders must be placed under this policy?

¢, Use the EOQ model to compute order quantities for each part and adjust the fixed cost of
placing an order until the average order frequency is 12 times per year. How does the
holding cost compare to that in part a where all parts are ordered 12 times per year?

. Rivethead Charlie is in charge of the raw materials crib at a facility that manufactures

specialized camping gear. In one part of the crib, Charlie stocks connectors. These are not

included on the bills of material for the end items, but instead are ordered according to

Charlie’s “two-bin™ system. Under this system, Charlie maintains two bins for each type of

connector that hold 1,000 units sach. Whenever one bin of a connector becomes empty,

Charlie opens up the second bin and orders a refill (that is, 1,000 units) to replenish the first

bin. The two most common connectors are rivets, which are used at an average rate of 2,000

per month, and screws, which are used at an average rate of 500 per month. The

replenishment lead time from the supplier is iwo weeks (one-half month), and the unit cost is
$0.10 for both rivets and screws. You can assume that demand (use in the manufacturing
precess) is Poisson for both types of connector.

a. Note that Charlie is following a (@, r) policy. What are Q and r for rivets and screws
under his policy?

b, What are the average fitl rai¢ and inventory investment (total for both parts) under
Charlie's policy?

¢. A summer intem suggests that Charlie should use “days of supply” to set the sizes of the
bins, rather than a fixed size of 1,000. What would be the (Q, r) policy that would result if
Charlie used bins sized to hold a one month supply of parts? What are the average fill rate
and inventory investment under this new policy?

d. Suppose Charlie uses a two-bin policy in which bins hold five weeks (1.25 months) of
supply. What are ( and r for rivets and screws, and what are the average fill rate and
inventory investment? What do the results of parts ¢ and d say about the efficacy of using
the days-of-supply approach to bin sizing? Is the intern’s suggestion a good one?

e. What type of policy might be better than a two-bin policy, with or without the
days-of-supply modification?

. Stock-a-Lot maintains inventories of parts to support repairs of manufacturing equipment. For

a subset of its parts, the expected use, unit cost, and replenishment lead time for the upcoming
year are forecast as follows:
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—
Use Cost Lead Time

Part {units/yr} {($/unit) {montks)
Nk S

i 5 1,000 1

2 10 100 2

3 5 200 6

4 20 1,000 1

5 5Q 5G 3

a. Find order quantities that make the average order frequency equal to five times per year, by
adjusting the fixed order cust and vsing the EOQ model.

b. Using the order guantities from part @, compute the reorder points so that the fiil rate 15 95
percent for all parts; and compute the average inventory investmenit.

¢, Using the order quantities fram part a, compute the reorder points that achieve an average
fill rate of 95 percent, by adjusting the stockout cost in the stockout model algorithm.

d. Compute the average backorder level resulting from the sotution to part . Using the
backorder model algorithin and the order quantities from part a, find the reorder points that
attain the same backorder level as part ¢. How dees the total inventory investment compare
to that from part ¢?

4. Reconsider the Stock-a-Lot problem, and suppose now that the warehouse supplies several
regional facilites. Assume the warehouse is stocked according to the policy computed in part
¢ of Problem 3. Consider a single facility supplied by the warehouse that has 12-hour actual
delivery times and a demand rate for part 4 of 10 units per year. Compute the following for
part 4.

a. Find the expected number of outstanding backorders at the warehouse.

b, Determine the expected effective lead time to the facility.

¢. Treating demand at the facility as Poisson, find the minimum base stock ievel for part 4 at
the facility that achieves a target service level of 99 percent.

5. A&T, Inc., has a spare parts system that corresponds to the example depicied in Figure 17.4,
a. A&T's current stocking policy has resulted in an average order frequency of F = 12, a fill

rate of S = 0.85, and an inventory investment of $2,500. Comment on the quality of the
policy. If you were to encounter a situation like this in practice, what system elements
would you look at in the hope of making improvements?

b. The president of A&T has demanded a system with a fill rate of § = 0.95 and inventory
investment of po more than $1,000. What can you say about the feasibility of this demand?
How could you respond to it?

6. Windsong, a novelty store that sells wind chimes and related items, stocks the popular “Old
Ben" model, Sales are steady at a rate of one per day (365 per year), and demand can be
regarded as Poisson, Windsong purchases Old Bens, along with other products from a supplier
that makes daily deliveries. Hence, Windsong uses a base stock policy for its products.

Suppose that the supplier has set its stocking policy such that the fill rate and average
backorder level for Old Bens are £9.7 percent and (.465 day, respectively. Replenishment
lead time is seven days.

4. What is the expected demand during replenishment lead time when delays by the supplier
are taken into consideration?

5. What is the standard deviation of lead time demand? Is it more or less variable than
Poisson?

¢. If we assume demand is Poisson, what fill rate will result from a base stock policy with a
reorder point of 10? Will the actual fill rate be higher or lower than chis?
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A P T E R

CAPACITY MANAGEMENT

You can’t always get what you want.
No, you can't always get what you want.
But if you try semetimes, you just might find
You get what you need.

Rolling Stones

18.1 The Capacity-Setting Problem

Choices about how much and what type of capacity to install have a strong directinfluence
on a firm's bottom line. Additionally, because capacity planning is at the top of the plant
planning hierarchy (see Figure 13.2), capacity decisions have a major impact on all other
production planning issues (¢.g., aggregate planning, demand management, sequencing
and scheduling, shop ftoor control). In this chapter we invoke factory physics concepts
to translate strategic capacity decisions into specific tactical terms. Our goal is to provide
a framework for capacity planning that explicitly recognizes its impact on the overall
plant management process.

18.1.1 Short-Term and Long-Term Capacity Setting

626

There are many times in the life cycle of a manufacturing facility when it makes sense
to adjust capacity. Most often, the motivation is to accommodate a change in the total
volume or the product mix of demand. In the short term, the facility can address demand
changes through the use of overtime, addition or deletion of shifts, subcontracting, and
workforce size changes. These policies were discussed in Chapter 16 in the context of
aggregate planning; they are clearly options in capacity planning as well,

Some of these short-term options may also be viable as long-term policies. For
instance, we could run three shifts or subcontract part of or all production on a semiper-
manent basis. Of course, if we outsource manufacturing of a product to a vendor on
a long-term basis, the vendor might eventually decide to sell it directly and become
a competitor. Fortunately, however, there are barriers to entry that often prevent this.
For example, nonmanufacturing factors such as rights to a recognizable brand name or
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possession of an effective delivery/service network can be cntical. Even if eventual
competition is not a serious risk, relying on vendors to manufacture parts or products
makes them a significant partner in the quality management process, as we discussed
in Chapter 12. Without measures 1¢ ensure vendor quality, the decision to outsource
manufacturing can seriously hamper a firm's ability to control its destiny,

In the long term, we must go beyond these short-term options and consider perma-
nent equipment, or “bricks and mortar” changes. These involve either major changes
to an existing facility or construction of a new facility altogether. In some cases, a firm
can permanently increase capacity by redesigning a product, using design for manufac-
ture (DFM) approaches (see Turino 1992, Chapter 7 for a discussion). More frequently,
however, the change must come from either adding machifies or processing stations or
making permanent changes in the productivity of existing equipment or procedures.

18.1.2 Strategic Capacity Planning

Before a firm can consider how much and what type of capacity to install, it must
articulate a capacity strategy. Such a strategy hinges on decisions that are very close
to the firm’s core business plan. For instance, it may need to decide whether to enter a
new market, whether to remain in an existing market, to lead or follow in the product
innovation process, to make or outsource a product, what segment of the market to
pursue, and many other questions. Taken together, these questions are tantamount 1o
the fundamental strategic question of “What business are we in?” which lies beyond
the scope of factory physics. The laws of physics can tell us how a particular physical
system will behave but not what system we should be interested in. Similarly, the laws
of manufacturing can help us design systems to attain specific objectives but cannot tell
us what our objectives should be. Therefore, for the purposes of our discussion, we will
assumme that the above strategic decisions have been made and that the issue is how to
evolve a capacity plan to support them.

Once we have decided that we need to add capacity, there are several issues to
address:

1. How much and when should capacity be added? Should additions be made
only when demand has already developed {when we are already losing sales), or in
anticipation of future demand? If we don’t anticipate demand, should we fill in the
overcapacity periods by using short-term measures such as overtime or subcontracting?
If we decide to anticipate demand, how far into the futere should we try to cover?
Adding large increments will satisfy demand farther into the future, will cause fewer
construction disruptions, and can take advantage of economies of scale. However, large
increments also imply poorer equipment utilization and greater exposure to risk. (What
if the forecasted demand does not materialize?) The appropriate approach also depends
on the production technolegy involved. For exampie, steel mills must generally add
capacity in large units in the form of new furnaces or rolling mills, while a metalworking
job shop can add small increments of capacity by adding individuai machines. See
Freidenfelds (1981) for an analysis of these issues.

2. What type of capacity should be added? The size of the capacity increment
we can add also depends on the flexibility of the equipment we choose. If machines
purchased now can be adapted to new products that will be introduced in the future, the
risk of installing more capacity than currently needed s substantially less. In today’s
environment of rapid product change, product lifetimes are often less than the lifeumes
of the production equipment; consequently, this type of flexibility has become a key
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consideration in choosing new capacity. See Sethi and Sethi (1990) for a review of the
different types of flexibility in manufacturing systems.

3. Where should additional capacity be added? Should we add capacity by ex.
panding an existing facility, or should we build a new one? Although it is often more
expensive to build a new facility than to expand an existing one, the new facility often
affords new marketing and distribution efficiencies, for instance by being closer to either
suppliers or customers. See Daskin (1993) for models of the facility location problem.

An important strategic concept is known as production econornies of scale. The
basic idea is that unit costs are typically (but not always) less for a large plant than for
a small one, Hayes and Wheelwright (1984) discuss three different economies of scale:
short-, intermediate-, and long-tenm.

Short-term economies of scale arise from the fact that in the very near term, many
manufacturing costs are fixed. Although adjustable in the longer term, the production
facility, its labor force, management, insurance cost, property taxes, and so on, for any
given day, are all fixed. The cost of these does not depend on production volumes.
Indeed, in the near term, the only true variable costs are material, some utilities, and
some wear on machines. We can express cost per unit as

Fixed cost + Variable cost
Throughput

Fixed cost

- Throughput

Unit cost =

+ Variable unit cost

Thus, in the short term, unit cost decreases as throughput increases.

Intermediate-term economies of scale depend on the run lengths used in produc-
tion—the number of units of a product that are produced before the facility switches to
another product. Given the changeover cost and run length of a particular product, unit
cost can be expressed as

Changeover cost

Unit cost = + Running cost per unit

Units per run
In this case, labor might or might not be fixed. Run lengths can be affected by setting
up less frequently (facilitated through setup reduction), by dedicating equipment {so
that some product families can be continually run without changing over), and by using
specialized equipment (e.g., flexible manufacturing systems). Of course, some of these
options can result in Jarger inventories, as we discussed in Part IL.

Long-term economies of scale are functions of plant equipment itself. Economists
have long noted that the cost of equipment tends to be proportional to its surface area,
while capacity is more closely proportional to volume. To illustrate the implications of
this, suppose the equipment is a cube with side length £. Then we can express cost as

K = alfz
and capacity as
C = 0233

where a; and a, are proportionality constants. To express cost as a function of capacity,
we solve for € in terms of C, and we get £ = a;C'/?, with a3 representing another
constant; then we substitute into the cost expression. This yields

K(C) = aC*?

where, again, a is a proportionality constant.
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For general (non-cube-shaped) equipment, cost as a function of the capacity can be
approximated by

K(C)=aC*

where b is typically between 0.6 and 1.
We can now express cost per unit as

K(C)

Unit cost = ——2= = g

Since b is usually less than one. this implies that unit cost tends to decrease with capacity.
That is, large plants are more efficient than small ones.

In practice, econcmies of scale frequently do enable bigger plants to achieve lower
unit costs, but not always, There can also be diseconomies of scale that cause the orga-
nization to lose efficiency as it becornes larger. One place this happens is in distribution,
A small compact cell has less material handling than a large plant composed of many
process ceniters. While process centers in the large plant may be more efficient than the
single stations of which the cell is composed, jobs must also be moved greater distances.
This increases material handling and cycle times, Also since large manufacturing plants
typically serve larger areas than small ones, their freight costs are typically higher. In
the case of bulky commodity products like bricks, the most profitable plant size may be
quite smail.

Another form of diseconemy of scale is due to bureaucratization. As the size of the
operation increases, 3o does the required amount of supervision and support. To keep
the span of controi manageable, the large firm adds layers of management, which further
decreases communication effectiveness. This can lead to compartmentalization and quf
wars. If not managed carefully, such diseconomies can be very destructive.

Finally, larger plants naturally create more risk. Natural disasters such as earth-
quakes, fires, floods, and hurricanes will obviously have a greater negative impact on
the company if they strike a single large plant than if they affect a single small facility
among many. Similarly, poor management, strikes, and the like are more disruptive if
the company capacity is concentrated than if it is distributed.

A natural question arises in this context: What is the optimal plant size? This
question is largely one of strategy, which is beyond the scope of this book. Moreover,
since it involves many firm-specific issues, a general-purpose answer is not possible.
The above discussion gives a preliminary overview of the issues to be considered. More
detailed treatments are available in the manufacturing strategy literature (e.g., see Hayes
and Wheelwright 1984; Schmenner 1993).

In keeping with our focus on plant management, we will assume that the size of the
facility has already been determined on the basis of strategic consideratons. Thus, we
will consider the problem of how to change capacity within a plant to attain a specified

set of objectives. In particular, we examine two scenarios: building a new facility and

changing an existing one.

18.1.3 Traditional and Modern Views of Capacity Management

To frame the capacity-planning problem at the plant level, it is useful to distinguish
between the traditional and the medern views of the role of capacity (Suri and Treville
1993). The traditional view is based an the interpretation of manufacturing efficiency
shown in the left portion of Figure 18.1. Here, the only question is whether there is
enough capacity to meet a particular throughput target, and the answer is either yes or
no. Ifutilization is below capacity, then production is feasible; otherwise, it is infeasible.
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Traditional versus modern
views of capacity planning
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The modern view, which is more realistic and consistent with the principles of
factory physics, holds that lead times and WIP levels grow continuously with increasing
utiljzation; this is shown in the right side of Figure 18.1. In this view, there is no one
point where production is infeasible. Instead a continuum of decreasing responsiveness
occurs as capacity is utilized more heavily.

These two views imply very different approaches to the design of production lines.
The traditional view suggests selecting a set of machines that have sufficient capacity, at
the lowest possible cost. But doing this usually leads to problems when the line goes into
production. We have encountered many piants with lines consisting of machines, each
of which has rated capacity above the desired rate, but which consistently fall welt short
of their throughput targets. {The reader who has absorbed the factory physics principles
of Part 11 should have a pretty clear idea of why such lines fail to meet throughput goals.)

The modern view atfords a much richer interpretation of the capacity issuc. Since
capacity is more than a simple yes-or-no question, we must consider other measures
of performance in addition to cost and throughput. WIP, mean cycle time, cycle time
variance, and quality are all affected by capacity decisions. If we can state our objectives
in terms of these measures, then we can formulate the capacity-planning problem very
simply (solving it, however, is a different matter) as follows:

For a fixed budget, design the “best” facility possible.

This formulation is imprecise since what is “hest” is difficult (0 define becausc we
usually have more than one objective. For instance, is a line with jow throughput and low
cycle time better or worse than one with higher throughput and higher cycle time? Aswe
discussed in Chapter 6, we get around the problem of dealing with multiple objectives by
using the technique of satisficing, that is, by selecting one measure as the objective and
fixing the remainder as constraints. In this way, the problem is divided into a strategic
problem that defines one or more tactical problems. The strategic problem might be
to choose how much capacity to have, how long cycle times should be, what types of
capacity to use, what throughput is required, and so on. The tactical problem is then to
minimize cost or some other quantity subject ta the constraints imposed by the strategic
problem. This approach of higher-level problems providing constraints for lower-level
ones was discussed in Chapter 6.

One formulation would be to maximize throughput subject to a budget consiraint
and, possibly, constraints on WIP and cycle time. Another would be to minimize cycle
time subject to constraints on budget and throughput. Stilt another would be to minimize
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cost sub.ject to constraints on throughput, cycle time, and WIP. Which is best depends
on the circumstances. If, on cne hand, we are concerned with improving an existing line
and have a fixed budget to spend, then the formulation to optimize something {maximize
throughput or minimize cycle time) subject to a budget constraint makes perfect sense.
If, on the other band, we are designing a new line to achieve given performance specifi-
cations, then minimizing cost subject to constraints on things like throughput and cycle
time is appropriate.

Regardless of the formulation chosen, we can use the resulting model to examine
important tradeoffs. For instance, if we use a model to minimize cost subject to con-
straints on throughput and cycle time, we can vary the levels of the throughput and cycle
time constraints to see how cost changes. The result will be curves of throughput versus
cost and cycle time versus cost, both of which are useful in deciding whether our imtial
strategic specifications were reasonable.

In addition o focusing on the opfimaliry of capacity decisions, we must be sensitive
to their robustness. The requirements we specify today may be quite different from our
requirements in the future. Tt is sometimes a good idea to spend a bit more money up
front {e.g.. on a capacity cushion, or on more expensive but more flexible equipment) to
cover future contingencies. We can consider such options by examining various demand
scenarios in the model, However, we must take care not to overbuild for the sake of robust-
ness. One of the reasons that wafer fabrication facilities are enorrously expensive is that
they are designed in the hope of making almost anything that might be desired in the near
future. Because technological uncertainty in semiconductor manufacturing is extremely
high, this requires installing the very latest leading-edge (or “bleeding-edge”) equipment.

For the remainder of this chapter, we will focus on the problem of mimimizing the
cost of installing or changing a line, subject to various performance constraints. We have
chosen this particular formulation for the following reasons: (1) It 13 the most natural
framework for considering the new line design problem, and (2) it is well adapted to gen-
erating cost-versus-performance tradeoff curves. However, one can easily analyze other
formulations (e.g.. to minimize cycle time subject to throughput and cost constraints)
using the tools and techniques we present here.

18.2 Modeling and Analysis

We have relied heavily on models throughout this book, primarily because maodels force
us to think carefully about the systems we are studying and help us develop intuition
about how they behave. But at the practical level, without some form of model, either
explicit or implicit, one cannot do analysis at all. Accounting, marketing, finance, quality
control, and virtually all other business functions rely on models to interpret data, predict
performance, and evaluate actions. Happily, the models upon which we rely to address
the capacity-planning problem are largely the same as those we used in Part Il to explain
the concepts of factory physics. In particular, we use the queueing network representation
of a manufacturing line to develop capacity analysis tools. Although we adhere to the
basic formulas introduced in Part I, there is a large literature on these tools, and we refer
the interested reader to Buzacott and Shanthikumar (1993), Suri et al. (1993), and Whitt
(1983, 1993} for more details.

For clarity, we concentrate our analysis on a single line and regard the remainder
of the production facility as fixed. We assume that the line has M workstations and
that the “manufacturing recipe” is given—that is, the operations required at each station
to produce the part or product are set in advance. We consider here only the case in
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which the line produces a single product, although we can accommodate the multiple-
product case by attributing the variability due to different processing times of different
products at the stations to the natural variability at the process centers (i.e., by inflating
the coefficient of variation of the effective processing times). We number the stations
1,2,..., M, where jobs arrive to station 1, which feeds them to station 2, which feeds
them to station 3, and so on. In this discussion we do not consider rework or branching
routings, although these can be accommodated by using more sophisticated versions of
the queueing network models (see Suri et al. 1993).

For each station there are a number of different technology options, consisting
of specific configurations of machines and/or operating policies, from which to select.
These options might include different models of machines from various equipment ven-
dors. They might also include a machine with and without a kit of field replacement
parts, where the option with the replacement parts has shorter repair times but higher
cost than the option without them. Notice that this definition makes identifying an ap-
propriate set of technology options more than a matter of collecting data from equipment
vendors. We must make use of our factory physics intuition from Part II to recognize
options like field replacement parts that are potentially attractive. We assume here that
a reasonable set of technology options can be generated and that cost, capacity, and
variability parameters can be estimated for each option.

To keep the number of technology options and the analysis manageable, we assume
that no mixing of machine types is allowed at multimachine stations. In other words, if
the line requires three Jathes and we have chosen the South Bend X-14 as our model,
we will use three South Bend X-14s. We cannot use two South Bend X-14s and one
Peoria P1000. This restriction is likely to be satisfied naturally in new lines, since we
are unlikely to want to deal with two equipment vendors when we can deal with only
one. In retrofit situations, it may not be literally satisfied, but is frequently not a major
problem from a modeling perspective.

Each option at each station is described by five parameters:

t, = mean effective process time for machine, including outages,
setups, rework, and other routine disruptions
¢, = effective coefficient of variation (CV) for the machine, also consideting
outages, setups, rework, and other routine disruptions
m = number of (identical} machines at station
k = cost per machine
A = fixed cost of machine option

The total cost of installing the option is given by A + km. Thus, if it costs $75,000
to install one machine and $125,000 to install two machines, then A = $25,000 and
% = $50,000. The idea here is to allow us to represent the costs of activities that need
only be done once, regardless of the number of machines installed, such as modifying
the electrical or ventilation systems or reinforcing the floor.

We described how to compute . and ¢ from more basic parameters in Chapter 8.
Here we assume that these have already been computed for each option. However, it
may be useful to examine the more basic parameters (MTTR, MTTF, etc.) to suggest
other technology options.

To formulate constraints for the model, we assume that strategic decisions have been
made regarding the overall performance of the line, which establish the following:

TH = required throughput
CT = maximum total cycle time
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Then, using the above parameters and a description of the arrival process to the line,
we compute the following for each station in the line:
u(m) = utilization of station with m machines instalted
CT(m)} = cycle time at station with m machines installed
¢, = CV of arrivals to station
¢q = CV of departures from station

The formulas for computing ¥ and CT are familiar from Part I and can be expressed

as
Fole
uim) = (18.1)
2 2 VZim¥)-1
CT(m) = (C“ T Cf) (” ):, +1, (18.2)
2 m(l — u}

The squared coefficient of variation (SCV) of the arrivals cf, is specified as a parameter
for station 1, and for subsequent stations is equal to the SCV of the departures from the
previous station. That is, letting ¢2(i) and cZ(i) represent the SCV of the arrival times

and effective processing times at station i(i = 1, ..., M), respectively, we have
S specified constant i=1
cal) = l A — 1) i>1 (18.3)
wherefori =1,..., M,
2 2 2 ut(m) 5
A =1+~ 1= 11 —u*m]+ —=I[c; (i) - 1] (18.4)
Jm

For a given equipment configuration {i.e., choice of technology option at each station)
we use Equation (18.2) to compute CT(m) and check the total cycle time constraint, If
it is violated, we must consider more capacity or a lower variability option. The trick is
to change the configuration in the most cost-effective fashion.

Before this can be done, however, we must have a starting point that has sufficient
capacity. We call this a capacity-feasible solution and give an example of how to find
it below.

18.2.1 Example: A Mininum Cost, Capacity-Feasible Line

Consider a four-station line with a throughput target of two and one-half jobs per hour
or 60 jobs per day (running three shifts per day). Suppose the SCV of arrivals to the
line is equal to 1.0 (recall that we termed this the moderate-variability case in Part IT).
Thus, TH = 2.5 jobs per hour and ¢2 = 1.0 for the first station. Set the target cycle time
for the line at CT = 16. To begin, assume that only one type of machine is available
at each station (although we.are allowed to choose the number of machines to install at
each station). Fable 18.1 gives the data for the four stations.

First, we perform a capacity check to determine the minimum number of machines
we need at each station. We do this by solving Equation (18.1) for the minimum value
of m that keeps utilization below one, that is,

ral,
2 m<l

uim) =

or m > rat,
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TanLe 18.1 Basic Data for a Line Design Problem

Fixed Cost Unit Cost i,
Station ($000) ($000) (hours) et
i 225 100 1.50 1.00
2 150 155 078 1.00
3 200 90 1.10 3.14
4 250 130 1.60 0.10

TaBLE 18.2 The Minimum Cost, Capacity-Feasible Solution

Station Number of Machines TUtilization Cast ($000)

1 4 0.94 625
2 2 0.98 460
3 3 0,92 470
4 5 0.80 500
Total 2455

For the first station,
rat, = 2.5 jobs/hour x 1.5 hours = 3.75

which indicates we require at least four machines. Table 18.2 summarizes the other
machine requirements and their correspending utilization.
Note that for station 4,

rate, = 2.5 jobs/hour x 1.6 hours = 4,00

However, this would yield a utilization of exactly |.0. Since the utilization law of factory
physics stated that utilization must always be strictly less than 1.0, we must assign five
machines to station 4, thereby lowering the utilization to .80,

Note that the solution in Table 18.2 is the least-cast configuration that has sufficient
capacity. This is called the minimum cost, capacity-feasible (MCCF) configuration
and in this case costs $2,455,000.

Tt is easy to extend this analysis to find the MCCF configuration when there is
mote than one technology option at each station. For each station we determine how
many machines of each option are required to meet the capacity target and choose the
option with the smallest total cost. Doing this for each station will result in an MCCF
configuration for the line.

18.2.2 Forcing Cycle Time Compliance

Once we have a capacity-feasible configuration, we then check the cycle time, using
Equations (18.2} and (18.4).
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Station |:
LO+ 1.OY {0.94¥206D-1
CT{4) = — )
{4 ( > )(4(]_0.94) )1.5+I.5—6.72h0ur5.
0.942
cr =1+~ Uil —094% 4 W(1 -1=10
Station 2;
1.0 + 1.0Y f0.98v2+D-I
CTQ) = ( ’2’ ) ( ST 058 )0.78 +0.78 = 15.82 hours
. 2
=1+~ 1(1-098)+ 7 $-D=10
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LA+ 314N f0.92Y20+1-1
CT(?,):( 5 ) ( 31 - 092) 1.1 + 1.1 = 8.87 hours
0.922
2 =1+ (1—1)1~-092%) + 7 (3.14 -1 =120
Station 4:

CT({) = (

2.0+0.1Y f0.80VFF-1
3 ) 5(1 — 0.80)

) 1.6 + 1.6 = 2.59 hours

The sum of these cycle times 1s 34 hours, which is significantly greater than the target
of 16. Clearly, the line needs changes to obtain a design that complies with the strategic
specifications.

There are three basic improvement alternatives: (1) Modify the existing machines,
(2) change the machine options, or (3) add more machines. Chapter 9 described how to
use factory physics principles to diagnose problems in 2 line. This approach could be
used to determine the cause of long cycle times (e.g., long and infrequent outages) and
therefore what machine modifications would be most effective. Tt might be worthwhile
to spend money to reduce variability or speed up a machine rather than to purchase an
additional one. Of course, if we are designing a new line, there are no “existing” tools,
and hence alternative one is not available.

Altering machine options in the pursuit of shorter cycle times might entail purchasing
a different and perhaps more expensive machine with better operating characteristics
(e.g., faster rate or smaller process variability). Often, however, especially in high-tech
situations, the number of distinct machine fypes is quite limited. In some cases there
may be only a single equipment vendor available. When this is the case, most of the
technology options that can be used to reduce cycle time are modifications of a given
machine type. Modifications include speeding up the machine, reducing setup time,
reducing MTTR, and so0 on.

The most obvious way to reduce excess cycle time is simply to purchase more
machines. If capacity comes in small increments, this might well be the most economical
approach.

Depending on the size of the required reduction in cycle time, the range of available
technology options, and the cost and size of capacity increments, the best approach may
consist of any number of combinations of these types of alternatives.
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18.3 Modifying Existing Production Lines

We now offer a heuristic procedure for determinting a least-cost configuration that meets
the throughput and cycle time constraints. The heuristic starts with the MCCF configu-
ration and then looks for the change that results in the “biggest bang for the buck” with
respect to cycle time improvement.

To illustrate this approach, we recensider the example of Table 18.1. Recall that
the minimum cost, capacity-feasible configuration (Table 18.2) did not satisfy the cycle
time constraint. Specifically, desired total cycle time was 16 hours, but the resuiting total
cycle time of the minimum cost configuration was 34 hours. We now consider how to
bring the configuration into cycle time compliance in a cost-efficient fashion. Note that
this is precisely the type of probiem faced by firms trying to implement the methods of
cycle time reduction or time-based competition in an existing facility.

To make the example more realistic, suppose we can modify as well as add machines
at each station. In particular, suppose that by spending $10,000 per machine at the third
station, we could alter long and infrequent random outages to shorter but more frequent
ones with the same availability (recall the discussion in Chapter 8 that showed why this
is desirable). We might be able to accomplish this by installing field replacement parts
and/or doing more preventive maintenance. We assume here that this does not change
., but does reduce ¢2 from 3.14 to 1.0. Using these cost and performance data, we can
consider this variability reduction option as an altemnative to adding machines.

Hence, these are the available options; At any station, we can add a machine; at
station 3, we can either add a machine or reduce machine variability by changing the
characteristics of the machine. For each aliernative, we can compute the change in cycle
time at the station and the change in cost.! A reasonable measure of the effectiveness
of the change is the ratio of the change in cost to the change in cycle time. The “best
single change” is that with the lowest ratio. We compute these ratios for each option in
Table 18.3.

The first thing we notice from Table 18.3 is that no single change reduces total cycle
time by enough to satisfy the cycle time constraint—we need an 18-hour reduction. The
smallest ratio is obtained by modifying the machine at station 3 (by reducing repair
time variability) with cycle time reduced by 4.49 hours at a cost of $30,000. This takes
us down to 29.5] hours, stiil considerably longer than the 16 hours allotted. If we
repeat the analysis, the minimum ratio occurs by adding a machine to station 2, which
costs $155,000 and further reduces cycle time by 14.7 hours. This takes us down to
14.81 hours, which is within the 16-hour constraint,

Although we are not guaranteed that repeatedly choosing the best single change
will bring us within the cycle time constraint at a minimum cost, this approach usually
works well. 1n any case, it does yield a configuration that is throughput- and cycle
time—feasible. For this example, the resulting solution is given in Table 18.4.

The total cost is $2,640,000, or $185,000 more than the MCCF configuration. In
addition, notice that this line is not even close to balanced. Surprisingly, the most
expensive station (number 4) has the lowest utilization. This is because both the fixed
cost and the unit cost at station 4 are quite high, and because four machines at station 4
result in 100 percent utilization.

I'We ignore what might happen downstream at this point, so our calculations are actually approximations
of the change in cycle time for the entire line. It is easy enough to go back and check the line cycle time for a
specific option, and for that matter it is not too hard to include downstrearn effects when estimating the effect
of a single change. However, 1if we do this, we can only evaluate changes one at a time-the reduction in
total cycle time from two options together is #or necessarily the sum of the reductions from each separately.
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TabLE 18.3 Cost and Cycle Time Impacts of Iinprovement Alternatives

Current Number Cost Increase | CT Decrease Ratio
Station of Machines Change (5000) (hours) ($060/monr)
I 4 Add machine 100 4.63 21.61
2 2 Add machine 155 14.73 10.52
3 3 Add machine %0 7.20 12.49
3 3 Reduce variability 30 4.45 6.67
4 5 Add machine 130 0.71 183.10

TaBLE 18.4 Capacity- and Cycle Time-Feasible Configuration

Station Number of Machines Utllization Station Cost ($000)

i 4 0.94 625
2 3 0.65 613
3 3 {modified) 092 S00
4 5 0.80 900
Total - 2,640

18.4 Designing New Production Lines

The problem of designing a new line is different from that of modifying an existing one,
in that there are typically many more options to consider. In a new line, we are not
constrained by existing machines, facilities, of even structure. Indeed, we may have so
much freedom that the problem becomes aimost impossible to solve in an optimal fashion.

18.4.1 The Traditional Approach

In the 18th century, when the first factories were designed, a major consideration was how
to arrange the various operations in order to run them from a single source of power—
the waterwheel. Consequently, operations were arranged in linear fashion along the
waterwheel shaft, each connected to a belt on a properly sized gear to cbtain the required
turning speed from the waterwheel, Today, it is not uncommon to find factories that
follow this traditional design, their process centers laid out in straight lines within a
rectangular facility.

We found this curious, since manufacturing plants have not relied on water power
for 150 years, and we questioned several architectural engineers who design complex
plants (e.g., wafer fabs) and manufacturing engineers who work in existing plants. We
discemed that a typical procedure for designing new plants and new lines goes something
like this:

1. Establish the basic size and shape of the new facility.

2. Determine where the support facilities (electricity, steam headers, process
gases, etc.) should go to mimimize the cost of the facility.



638

Part fII - Principles in Practice

3. Determine where the workstations should go within the facility to minimize
cost.

4, Determine the product flow.

Given this, the tendency toward linear layouts is not surprising. Since the design
process starts with the size and shape of the facility, tradition exeris strong influence
over the resulting design. But there are obvious preblems with this scheme. The most
setious is that little consideration is given to product flow until after most of the plant
has been designed.

18.4.2 A Factory Physics Appreach

A good alternate approach is to view the probiem from a customer perspective. This
makes it clear that the main purpose of a line or plant is to provide quality product in
a timely and competitive fashion. A facility design process consistent with this goal,
which is almost the reverse of the traditional approach, is the following:

1. The customer determines the product. Mixes, volumes, and cycle times are
forecast.

2. The product(s) determine(s) the processes. For most products, there is a basic
recipe of steps that must be done to produce a unit.

3. The processes determine a basic set of machines, Machine descriptions will
start out very general and will acquire detait as the planning process evolves.

4. The machines determine the facilities needed to support them.

5. The facilities determine the overall structure and size of the plant,

Of course, if we were to literally follow this procedure, we could end up with a
facility that is well equipped to make the product in the volumes desired but is too costly
to build. Focusing solely on product flow in order to minimize cycle times may lead
us to install multiple expensive machines when one would have done. For instance,
in a wafer fab, the photolithography operation is typically one of the more expensive
machines in the fab, Its facility requirements are enormous, and to make matters worse,
the wafers must visit the operation for each layer (often 10 or more) applied during
fabrication. A pure cycle time minimization perspective might suggest installing 10 sets
of equipment at a tremendous cost. A pure cost minimization perspective would call for
only one set of equipment. The “best” option can only be determined by considering
photolithography in the context of the other operations and comparing relative costs of
different configurations that meet performance targets.

As a result, it makes sense to approach the facility design problem from a combi-
nation of the traditional and factory physics perspectives. We start with an idea of the
basic processes and layout of the factory. Using the basic layout, we install the process
centers, sizing them to meet desired throughput and cycle time levels. If the resulting
configuration results in too high a facility cost, we reconsider the basic layout. On the
other hand, if cycle times are excessive, we consider installing more support facilities to
improve process flows.

As part of the analysis, we might also want to do a Pareto analysis of the product mix
to determine if a “factory within a factory” concept is applicable. If most of the volume
is for a relatively small number of products, it may make sense to duplicate processes in
the plant. One set, in a tight flow line configuration, 18 dedicated to the small number of
products representing the large portion of throughput. The other is arranged in more of
a job shop configuration that maximizes flexibility at the expense of lower utilization or
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higher cycle times. Low utilization should be expected in this portion since the volumes
are (by design) low.

QOuce we have settled on a basic layout, we tum o detailed selection of specific
options and nuimbers of machines. A relatively simple procedure is to start with the
MCCF configuration and then successively choose the best single change, as described,
to bring the line into cycle time compliance. To be effective, we should include as many
available technology options (i.e., including both purchasing additional machines and
modifying machines and/or procedures on site) as we can without overwhelming the
decision maker. We want to avoid overiooking an inexpensive medification that allevi-
ates a performance problem and eliminates the need for additional expensive machines.
Factory physics diagnostic procedures (Chapter 9) are usetul in identifying promising
options.

Of course, as we know, the performance requirements {e.g., thronghput and cycle
time targets) are themselves decision variables. Although we can specify plausible values
to start the analysis, it makes sense to examine tradeoffs between cost and performance.
For example, if we could shorten cycle times by five days at a cost of $100,000, we might
well decide to do it. We can do this with our model by solving it for various values of
the throughput or cycle time constraints in order to generate a cost-versus-performance
curve, A typical plot of cost versus total cycle time is shown in Figure 18.2. While
the model cannot specify which point on this curve is optimal, it does provide useful
information to help the decision maker make a rational choice.

18.4.3 Other Facility Design Considerations

These discussions offer some perspective on how to incorporate cost, throughput, cycle
time, and other factors into a customer-oriented facility design process. However, there
is more to the facility design problem than we have dealt with here. Indeed, there exists
a vast literature called, broadly, plant layout or facilities planning, which deals with
topics ranging from the placement of various process centers to minimize product flow,
to determining the number of employee parking spaces. This literature addresses the
important issues of materials handling, physical plant layout, storage and warehousing,
office planning, facility services, and developing and maintaining facilities plans. We
suggest Tompkins and White (1984) as a good introduction to this field.

18.5 Capacity Allocation and Line Balancing

As the previous example illustrated, factory physics procedures for line design are un-
likely to result in a balanced line. The reasons are as follows:
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|, An unbalanced flow line with distinct bottieneck is easier to manage and
exhibits better logistical behavior (i.e., has a characteristic curve closer to the
best case) than a corresponding balanced line.

2. The cost of capacity is typically not the same at each station, so it is cheaper to
maintain excess capacity at some stations than at others.

3. Capacity is frequently available only in discrete-size increments (e.g., we can
buy one or two lathes, but not one and one-half), so it may be impossible to
match capacity of a given station to a particular {arget.

When appropriate consideration is given to these factors, the optimal configuration of
most flow lines will be an unbalanced line.

Paced Assembly Lines

Despite the arguments in favor of unbalanced lines, sometimes line balancing makes
sense. Indeed, the line-of-balance (LOB) problem is a classic problem in industrial
engineering. However, it is applicable only to paced assembly lines, not flow lines.
In a flow line, stations are essentially independent, Each station operates at its own
speed, so the bottleneck is the slowest station in the line. In a paced assembly line,
parts flow through the line on a belt or chain that moves at a constant speed. The parts
move through zones that usually contain one or mare operators. The line is designed so
that the operators will almost always be able to complete their task while the part is in
their zone. If not, the line would be disrupted as workers tried to finish tasks in the next
worker’s zone. Hence, the bottleneck of a paced assembly line is not the stowest station
in the line but the line-moving mechanism itself. .

Additionally, capacity increments in a paced assembly line are usually much smaller
than those in a flow line. In a paced assembly line, tasks are typically assigned to workers
on the line and can be split into fine increments. For example, in 2 manual electronic
assembly operation, each station “stuffs” circuit boards with a number of components.
Since there are many components, the line can be balanced by adjusting the amount of
stuffing done at each station. A discussion and an example technique for solving the
LOB problem are given in Appendix 18A.

Another justification for a balanced assembly line is one of personnel management.
No one likes to be in a situation in which they are constantly expected to do more than
their peers for the same pay. Since most assembly lines are staffed by people (although
some assembly lines use robots), the issue of fairmess is an important one. In these cases
a line in, which each station has nearly the same amount of work is desirable,

In contrast, in a flow line, the tasks depend more on the machines themselves and are
therefore less easily divided. To increase capacity at a particular station, we must either
add an additional machine to that station or speed up the existing ones. Unfortunately,
the notion of a balanced line has become so ingrained that it is often applied when it is
inappropriate. This and the desire to have high utilization are the reasons one frequently
encounters nearly balanced flow lines.

18.5.2 Unbalancing Flow Lines

The previous reasons for unbalancing flow lines suggest that a process with small and
inexpensive capacity increments should never be a bottleneck. Such a process can easily
and inexpensively add small increments of capacity until it no longer causes problems
due to insufficient capacity. On the other hand, a process for which capacity comes in
large expensive blocks is a good choice to be the line bottleneck.
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As an example, consider two different process centers in a circuit board plant; cop-
per plate and manual inspect. The manual inspect operation occurs before the copper
plate operation.> Copper plate utilizes a machine that involves a chemical bath along
with enormous ameunts of electricity. Each machine has a capacity of around 2,000
panels per day. Adding an additional machine at copper plate costs more than $2 million
in machine and facility costs and requires a significant amount of floor space. Cop-
per plate represents one of the largest and most expensive machines in the plant. In
contrast, each of the stations in manual inspect requires one semiskilled operator, an
illuminated magnifier, and a touch-up tool. Each station can inspect around 150 panels
per day. None of these stations costs more than $108, and the floor space requirements
are small.

If these were the only two stations in the line, the situation would be easy to analyze,
If we designate the copper plater to be the bottleneck, then we can easily and inexpen-
sively keep it from starving by adding capacity to the manual inspect operation. It is of
little consequence that manual inspect is not fully utilized. On the contrary, to designate
manual inspect as the bottleneck and to keep it from starving,® we would have to add
a large and costly increment of capacity to the copper plate operation. Thus, it makes
more sense to designate copper plate as the bottleneck and to manage it accordingly.

18.6 Conclusions

This chapter has focused primarily on applying the factory physics framework to the
design of new production lines and improvement of existing ones with respect to capacity.
Our main points can be summarized as follows:

1. Capacity decisions have & strategic impact on the competitiveness of the man-
ufacturing operation. A capacity strategy has a strong direct effect on costs and many
indirect effects on performance by influencing other planning and control problems, in-
cluding aggregate planning, scheduling, and shop fioor contrel. Decisions include how
much, when, where, and what type of capacity to add. Other strategic issues involve
various economies and diseconomies of scale.

2. Factory physics formulas can provide the basis for line design and improvement
procedures. By allowing computation of throughput, cycle time, and WIP for a given
configuration, these formulas enable us to frame the line design or improvement prob-
lem as one to minimize cost subject to specified throughput, cycle time, and/or WIP
constraints. By varying the constraints, we can also generate cost-versus-performance
constraints.

3. Capacity additions and equipment or procedure modifications can be viable al-
ternatives and/or complements to one another. For instance, reducing repair times on
an existing machine can sometimes have similar logistical effects as adding capacity to
a station in the form of additional machines. Al other things being equal, the value of
procedural changes is typically greater than that of equipment additions, because the
learning and discipline gained from improving a line can be translated to other lines,
while simple capacity additions offer no such leamning opportunities.

2The capscities, capabilities, and even the process description have been altered here from those in a
circuit board plant in which the avthors have consulted.

IRecall that in a CONWIP line, there really is no front to the line. Thus, workstations eazlier in the line
can be starved by Jater workstations if the pull signais Gi.e., the CON'WIE “cards™) are not remurned in a

timely manner.
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4. Flow lines should generally be unbalanced. Logistical and cost differences be-
tween stations make it sensible toconfigure flow lines to have different levels of utitization
at the stations.

5. Paced assembly lines should generally be balanced. On paced assembly lines it
is the pacing mechanism {e.g., the conveyor or chain) that is typically the bottleneck.
To enable workers to complete their assigned tasks within the allotted pacing time, as
well as to allocate work fairly, it makes sense to divide tasks among stations as evenly
as possible, subject to precedence and discreteness requirements.

1t is important to note that lines designed using factory physics procedures are likely
to be more expensive than lines designed using a traditional minimum cost, capacity-
feasible approach. However. they are also much more likely to do what they were
designed to do. When one considers factors such as lost sales due to inability to meet
throughput targets, loss of customer goodwill due to inability to meet cycle time targets,
and the confusion that results in trying to operate a line that is in a constant state of
chaos, the more expensive faciory physics lines are likely to be much more profitable in
the long run.

APPENDIX I8A
THE LINE-OF-BALANCE PROBLEM

Assigning tasks to stations on a paced assembiy line should be done so that each station has nearly
the same amount of work. There are two good reasons for this: to use labor efficiently and to
avoid issues of fairness that result when one station must work much harder than another.

Assume there are n tasks to be performed on each piece moving through the line and the time
to da the ith task is #;. These tasks are assigned to k workstations where k < n. If t is the time
allowed for each station (i.e., the time for the conveyor to move through a workstation), then the
rate of the line will be r, = 1/1,.

Since the tasks have random times, we need to make some allowance for variability. We define
¢ < 1 1o be the maximum time allowed for task assignment. By requiring the sum of the mean
task times 1o be less than or equal to ¢, we provide some extra time at each station to accommodate
the inherent variability of the tasks. Note that u = ¢/t is the maximum utilization of any statien
in the line and is always less than one.

In many texts dealing with the LOB problem, ¢ is called the cycle time. However, since we
use this term to refer to the time through an entire routing, we will refer to ¢ as the conveyor time
{i.e., because it is the time the conveyor allows at each station).

The objective of most line-of-balance algorithms is to minimize total jdle time, which we write
as

Total idle time = kc — Y _1;

i=1

An equivalent measure is known as balance delay

_ ke -y

b ke

which represents the total fraction of idle time.

To further complicate matiers, we must consider a number of other constraints. The most
comimon are precedence constraints, which occur when certain tasks must be done before others.
We will consider only precedence constraints, but refer the reader to Hax and Candea ( 1984,
section 5.4) for a more complete discussion of the LOB problem and a survey of relevant literature.
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1t turns out that the LOB problem is very complex {i.e., NP-hard), so that optirnat algorithms
ofien require excessive amounts of computer time for realistically sized problems {e.g., with 100
tasks or mote}. For this reason, most commercial packages rely on heuristic methods.

We illustrate a heuristc LOB algorithm using a simple procedure that is similar to that of
Kitbridge and Wester {1961) by using an example from Johnson and Montgomery (1974, p. 369).
To do this, consider the nine 1asks whose precedence relations are given in Figure 18,3, The times
for these tasks and the number of successors are given in Table 18.5. Note that task 5 has the
largest average performance time of 10, Thus, ¢ > 10, Also note that the sum of the performance
timesis 3, ¢, = 48.

To have zero idle time, the ratio ¥ ;._; & /c must be an integer. However, this does not guarantee
zero idle time because the precedence constraints might prevent the required assignment of tasks
to stations. Nonetheless, this fact and

n
max{t) € ¢ < Yo

=1

help to determine an appropriate value for ¢. If we factor S =48, we get
2x2x2x2x3 =48
The combinations of these factors that are between 10 (the latgest performance time) and 48 (the
sum of the performance times) are
Z2x2x2x2x3=48

2x2x2x3=24
2x2x2x2=16
2x2x3=12

TaBLE 18.5 Data for LOB Problem Example

Task Average Performance Number of
Number Time Successors
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So we might be able to achieve a perfectly balanced line (i.e., no idle time) with cither 48/48 = 1
station (obvious and not very useful), 48/24 = 2 stations, 48/16 = 3 stations, or 48/12 = 4
stations. Let us consider the case with c = 16, the three-station case.*

To describe our procedure, define A to be the current station number, T the set of tasks assigned
to the current station, A the time available to be assigned at the current station, and § the set of
available tasks to be assigned, that is, those tasks whose precedence constraints have been satisfied

and whose performance times fit within the remaining time. The algorithm then proceeds as
follows:

Step 1. Set the current station number & to 1.
Step 2. Set the time available to ¢, A « ¢, and T = ¢, indicating no assignments thus far.

Step 3. Determine the set of candidate 1asks for assignment S. To be a candidate, two
conditions must be satisfied:

1. All predecessors of the candidate must be scheduled, or equivalently,
the candidate has no predecessors.
2. The performance time does not exceed the time available: £; < A.

Step 4. Choose the task j from the set S, using the following two rules:

1. Choose the task that has the largest number of total successors.
2. Break ties by choosing the task with the longest performance time.

Place the task in T'.
Step 5. Update the available time A < A —¢,. Remove 1ask j from set S.
Step 6. Repeat steps 3, 4, and § until no candidate tasks remain (i.e., set § is empty).

Step 7. If there are tasks remaining, increment the station number and go 1o siep 2.
Otherwise, stop.

To apply this algorithm to our example, we start with
N=1 A=16 §={l.2}] T=¢

Set S contains tasks 1 and 2 only, since they are the only tasks without any predecessors. Since
task 1 has the most successars, we assign it first to station 1. We now have

N=1 A=1t S§={23} T={1}
Note that task 3 is now a candidate since its only precedence, task 1, has been scheduled. Since
task 2 has the most successors and fits within the available time, we schedule it next.

N=1 A=8 S={34 T={(L2
Both tasks 3 and 4 are now candidates for the next slot. Here we see the importance (and arbi-
trariness) of the heuristic rules. Since our rule is to select the task with the rnost successors, we
select task 4 which fits perfectly (using all eight tirne units remaining). If we had selected task 3,
we would have had time remaining at the statjon after the task assignments. More sophisticated
LOB algorithms would try all combinations of the tasks remaining and see if any are a perfect fit.
This, of course, increases the amount of computer time required. The status of the algorithm is
now

N=1 A=0 S=¢ T={1,2,4)
There are no candidate tasks because the time remaining is zero. We must now move on to schedule
the second station. We reset A = ¢ and note that there are now two candidate tasks

N=2 A=16 S§={3,6] T=¢

Task 3 has the greatest number of successors and so is scheduled first at station 2. The status is
now

N=2 A=10 S§=1{56 T={3

“Of course, by choosing the value ¢ = 16 we have established the throughput of the line. If we need
greater throughput, we might be better off with c = 12, even though the line will not be perfectly balanced
and even though there is more idle time. These issues are often not considered in LOB software.
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Tasks 5 and 6 both have three successors. However, task 5 is the longest task and just fits in the
time remaining. We finish station 2 with
N=2 A=0 S={6 T=(35)
The remaining tasks all fit within the conveyor time ¢ at station 3.
N=3 A=0 S=¢ T={67289)
The schedule is optimal with 5 = 0.

Note how many times during the algorithm that we got lucky when tasks “just fit" in the time
remaining. This is not typical and, in fact, would not happen when ¢ = 12 or ¢ = 24. Most
commercial algorithms try many different values of ¢ and different tie-breaking niies within the
procedure.

Study Questions

1. Why would anyone want to add capacity before demand has materialized? Why would
anyone want to lag beliind dernand?
2. Why is the unit cost usually less expensive in a large plant than in a smalt one? What might
cause this not to be true?
3. Why is the traditional view of capacity management inadequate? What law from factory
physics speaks to this directly?
4. Consider this statement: For a fixed budget, design the “‘best” facility possibie. Provide a
more specific problem statement in terms of cost, cycle time, throughput, and so on.
5. Why is it appropriate to balance a paced assembly line but not a line of independent
workstations? What is the bottleneck of a paced assembly line?
6. Consider the line-of-balance problem. Why should the conveyor time ¢ be greater than the
maximum time assigned at any station? What might happen if it were not?
7. What are some shortcomings of the traditional approach to designing factories in which we
start with the size and shape of the plant, decide where the support facilities go, and then
decide where ta place the tools? What are some shoricomings of the factory physics approach?

Problems

. You are charged with designing a three-station flow line that must achieve a target throughput
of five jobs per hour and a total cycie time of threc hours or less. Each station must consist of
a single machine purchased from a vendor who will construct it to your specifications, any
speed you desire. However. the price depends an the speed as follows:

B(s)

where K (i) is the {total) equipment cost at station i; £,({) is the effective process time of the
machine at station i and a(i) and b(i} are constants. Assume that the arrival coefficient of
varation {CV) to the line is equal to one and that ¢ () = Lfori = 1,2, 3 (i.c., the process
CV fur all machines is equal to one, regardless of the speed).
a. Suppose that a(i) = $10.000 and b(i) = L fori = 1,2, 3. Find the values of #.(i) for
i = I, 2, 3 that achieve target throughput and cycle time with minimumn total equipment
cost. (Hint; The Solver tool in Excel is very handy for this.) Is the result a balanced line?
Explain why or why not.
b. Suppose that a(1) = $1, 000, a(2} = $100, 000, a(3) = $10, 000, and b(i} = % for
i =1,2,3. Find the values of #,(i) for i = 1, 2, 3 that achieve target throughput and cycle
time with minimum total equipment cost, Is the result a balanced line? Explain why or

—_—

why not.
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c. Suppose that everything is the same as in part @ except that now (i} can only be chosen in
multiples of 0.05 hour (0.05, 0.1, 0.15, etc.). Find the values of #.(i) fori = 1, 2, 3 that
achieve target throughput and cycle time with minimum total equipment cost. Is the result
a balanced line? Explain why or why not.

d. What implications do the results of this simplified model have for designing realistic flow
lines?

2. Table 18.6 gives the speeds (in pteces per hour), the CV, and the cost for a set of machines for
a circuit board line. Jobs go through the line in totes that hold 50 panels each; this cannot be
changed. The CVs represent the effective process times and thus include the effects of
downtime, setups, and other common disruptions.

The desired average cycle time through this workstation is one day. The maximum
demand is 1,000 panels per day.

@. What is the least-cost configuration that meets demand requirements?

b. How many possible configurations are there?

¢. Find a good configuration.

3. Challenge: Consider the data in Table 18.1 along with the option of reducing the c? for station

3 as described in Section 18.3. Design & line with maximum throughput that has cycle times
of not more than 16 hours and an equipment budget of no mare than $2,800,000.

4. Asscmbling a computer monitor requires a chassis, two main circuit boards and components,
a yoke, foliowed by a test. These are performed according to the following precedence
requirements:

+ The chassis must be put down first. This takes two minutes,

» Board ! requires only a chassis. It takes three minutes.

» Components | require that board 1 be in place. Placing these components on the board
takes three minutes.

« Board 2 requires that board 1 be in place. Board 2 takes four minutes to insert.

» Components 2 require that board 2 be in place. These take two minutes to insert.

* The yoke requires that all the boards and the components be in place and takes three
minutes to install.

» Testing, naturafly, requires that all the assembly be finished and takes five minutes o
perform.

a. Draw a precedence diagram of the assembly of a computer monitor.

b. What is the minimum coaveyor time that could possibly result in zero balance delay?

¢. If the expected utilization is 0.85, how many monitors will be produced per hour using the

minimum conveyor time computed above?
d. Assign the tasks o stations using the minimum conveyor time. What is the balance delay?

A —
TaBLE 18.6 Possible Machines to Purchase for Each Work Center

Possible Machines (Speed (pieceshour), CV, Cost ($000))

Station Type 1 Type 2 Type 3 Type 4
MMOD 42, 2.0, $50 42, 1.0, 85 50, 2.0, $65 10, 2.0, $110.5
SIP 42,240, 850 42, 1.0, $85 50, 2.0, $65 10,2.0, $110.5
ROBOT 25, 1.0, $100 25,07, 3120 — —
HDBLD 50, 0.75, $20 5.5,0.75, $22 6,0.75, $24 —
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19 SyYNTHESIS —PULLING
IT ALL TOGETHER

This is hot the end. It is not even the beginning of the end. But it is, perhaps, the end of
the beginning.
Winston Churchill, Noveraber 10, 1942

19.1 The Strategic Importance of Details

We will be the first to admit that the treatment of manufacturing in this book has been tech-
nical. Manufacturing fs technical. It would be nice if we could just do what feels right,
get product out the door, and make a living. But there are fewer and fewer businesses in
which this is possible. Under the pressure of intense global competition, manufacturing
firms are forced to continually improve cost efficiency, product quality, and delivery
responsiveness. Certainly a sirategic vision is essential to foster an environment where
this kind of performance is possible. But it is only through careful attention to technical
detail that it can be achicved.

Tn the 1950s and 1960s America could afford to gloss over the details of manufac-
turing and concentrate on high-level marketing and finance issues. Inthe wake of World
War I1, American manufacturers did not need to worry about costs or defect levels that
were a few percent too high. Customers had few alternatives and low expectations. In
the 1980s and 1990s, however, consumers began to see high-quality, reasonably priced
products from Japan, Germany, Korea, and many other places, and accordingly, they
grew 10 expect more from American manafacturers. As a result, today even a relatively
small gap in cost, quality, or customer service can drive a firm right out of a market.

The strategic value of details, however, goes well beyond their role in achieving
small but important performance improvements. The most imporant reason that we
need a deeper understanding of manufacturing systems is that the pace of technological
change in recent years has made wial-and-error solutions almost useless. Henry Ford
produced the Model T for an entire generation, so he could evolve systems and solutions
by observing and tinkering with the production line. In contrast, the typical life span of
a personat computer is less than two years, which means that modern PC manufacturers
must set up the facilities, ramp up the volumes, attain the efficiencies needed to make
a profit, achieve the level of predictability needed to ensure good customer service, and

647
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phase out the product, all in a very short time. Predicting and analyzing the behavior of
a system before it is in place requires sound intuition and appropriate models, both of
which are premised on an understanding of the technical details of manufacturing.

19.2 The Practical Matter of Implementation

Having the proper analysis tools is a key prerequisite for making significant improve-
ments to a manufacturing system. But implementation is more than a matter of being
right. An effective manufacturing manager must pull together a coherent plan and nur-
ture it to fruition. This requires (1) addressing the right problem and (2) convincing
others that it needs to be selved. The first is the subject of systems analysis, while the
second deals with the buman element of manvfacturing management. Chapters 6 and
11 addressed these: but they are so central to the implementation process that we revisit
them briefly here.

19.2.1 A Systems Perspective

The laws and formulas of factory physics can help identify areas of leverage, build
intuition about why certain approaches work in certain environments, and evaluate and
compare specific policies. But they cannot generate original ideas. The managers of a
manufacturing system must determine what they want it to do before any tools can be
applied to the question of Aow to do it. Therefore, to fully exploit the strategic potential
of factory physics, it is important to use it in the larger problem-solving framework of
systems analysis.

Recall from Chapter 6 that the essential aspects of systems analysis (as well as the
modemn variant of systems analysis, business process reengineering) are as follows:

1. A systems view. The problem is viewed in the context of a system of interacting
subsystems. The emphasis is on taking a broad, holistic view of the problem, rather than
a narrow, reductionist one.

2. Means-ends analysis. The objective is always specified first, and then alternatives
are sought and evaluated in terms of this objective. For instance, a systems analysis
project might use the objective “to deliver finished goods swiftly and conveniently to
customers,” but would not use the objective “to improve the efficiency of processing
purchase orders.” The latter is a “means-first” approach, which could rule out potentially
attractive options—such as doing away with purchase orders under an entirely new
procedure.

Tn systems analysis, objectives are typically organized into a hierarchy of objectives,
which identifies the links between the fundamental objective and various lower-level ob-
jectives. This helps identify conflicting objectives (e.g., low inventory and high fill rate)
and highlights lower-level objectives that support more than one higher-level ohjective
(e.g., short cycle times allow for better manufacturing quality as well as better customer
responsiveness).

3. Creative alternative generation. With the objective in mind, the systems approach
seeks as broad a range of alternate policies as possible. For instance, to reduce manufac-
turing cycle time, we should go beyond simply considering how to speed up individual
processes and think about basic causes of cycle time. Many formalized brainstorm-
ing techniques have been developed to encourage expansive thinking about nonobvious
alternatives.
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4, Modeling and optimization. To compare alternatives in terms of the objective,
the project requires some kind of quantification. The modeling/optimization step for
doing this may be as simple as computing costs for each alternative and choosing the
cheapest one, or it may require analysis of a sophisticated mathematical model. The
appropriate level of detail will vary depending on the complexity of the system and the
magnitude of the potential impact.

5. Iteration. In every complex systems analysis project, the objective, alternatives,
and model are revised repeatedly. This is because as we perform the analysis, we learn
more about the system. In Chapter 6, we formalized this procedure as the “conjecture
and refutation” process.

The systems analysis procedure helps focus attention on the correct probiem (ie.,
where major leverage exists), promotes insight into the system, and fosters a sense of
teamwork toward the project. As such, it is a vital starting peint and frame of reference
for virtually any manufacturing improvement project.

19.2.2 Initiating Change

Systems analysis is valuable in generating and evaluating ideas. But no matier how good
an idea is, it will never be implemented if it cannot be communicated. All the factory
physics arguments in the world will not change 4 manufacturing organization unless the
people in it are convinced of the need for change and know what they must do to bring
it about.

Overcoming institutional momenturn can be very difficuit. As Machiavelli put it:

There is nothing more difficult to take in hand, more perilous to conduct, or more uncertain
in its success, than 10 take the lead in the introduction of a new order of things.

The amount of effort required to put through a program of change depends on the
situation. Tf the manager of a production line has used her factory physics insight to
recognize that reducing setups on & particular machine would reduce WIP and cycle
time. and she has the authority to form a setup reduction team consisting of machine
operators and staff engineers, then she shoutd probably go ahead and do it. No hoopla,
slogans, or revolutions are required to make small, incremental changes in the system.
And while such changes will not remake the company, they can be important parts in
the process of ongoing improvemeat.

Bigger changes. such as refocusing a plant as part of a time-based competition
strategy, require much more institutional support. Radically reducing customer lead
times by addressing the entire product delivery process——which invulves sales, order en-
try, manufacturing, customer service, and possibly many other functions—demands the
leadership of someone with sufficient clout to make the necessary changes. Depending
on the system, this might be the plant manager, of if influence beyond the plant is needed
(e.g., product development or component production), someenc even higher, perhaps
the vice president for manufacturing or chief operating officer. Once the leader has been
assigned, it is critical for mm/her 10 instigate the change and provide ongoing support
for it. If the leader gives a few fiery speeches and then disappears, momentum for change
will quickly evaporate.

An effective leader with the requisite authority can get people inspired to change,
but cannot actually carry out the change. Systems analysis teams are typically needed to
do the analysis and oversee the implementation required to actually reshape an organi-
sation. These teams can be configured and managed in many different ways (see Hayes,
Wheelwright, and Clark 1988; Hammer and Champy 1993 for examples). We will not
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go into a great deal of depth about this, but we make the following observations about
systems analysis teams;

1. Teams should nat be committees. That is, they should be small enough to function
aggressively. If the number of people on a team exceeds 10 or so, it becomes so difficult
to get everyone together that the team becomes ineffective.

2. The tean should consist of key people from the major functional areas affected by
the change. For instance, a cycle time reduction effort should involve people from sales,
manufacturing, praduction control, and so on. These people must be chosen to have a
“big picture” attitude, so that they are not simply protecting their turf. Allernatively,
they could be assigned 100 percent to the systems analysis team with the knowledge that
afier the team is dissolved, they will not go back to their previous position. The idea is
to motivate people to think in terms of what is good for the overall system, not just for
their part of it.

3. The team should include some outsiders, people not directly connected with the
system under consideration. These gould be people from elsewhere in the organization
or independent consultants. The purpose of these outsiders is to act as provocateurs
who will challenge assumptions and traditions. It is altogether too easy for a team of all
insiders to mistake the way things are for the way things must be.

When supported by an influential leader and well-chosen analysis team, a systems
analysis can be a powerful tool for bringing about dramatic change ir an organization.

19.3 Focusing Teamwork

Often in modern manufacturing organizations, it is not the big failures that are most
damaging, but rather the small successes. A highly visible failure that occurs when a
firm attempts to push out the envelope of manufacturing practice is a noble effort and a
valuahle Jearning opportunity. In the right environment (one that does not punish people
for taking good risks or become overly conservative in reaction to a failure), such failures
are necessary and positive steps on the read of continual improvement.

In contrast, smal) safe projects that make tiny improvements can ensure their leaders
of positive performance evaluations, but can steadily undermine the competitiveness of
a firm. The reason is that they sap the resources of the organization. A firm that devotes
too much energy to the easy marginal improvements is open prey 10 a competitor who
aims higher. In this era of intense competition, the “all safe” strategy is almost a sure
formula for failure.

This observation implies that a critical first step in setting up a systems analysis team
is to focus the team on a problem of real importance. One way to do this is to make sure
the original topic of a systems analysis study is sufficiently broad to allow the team to
identify the major areas of leverage for themselves. As illustration we offer the example
of a systems analysis in which the authors participated some years ago. At the inaugural
workshop, the objective was stated as increasing the efficiency of the painting process.
After listening to a great many details about the problems in painting, we asked about the
motive for improving painting and learned that manufacturing cycle times were too long
relative to the competition. But afier we asked more questions, we were able to estimate
that painting accounted for less than one day of a 10-week cycle time. Eventually, we
discovered that the single major determinant of cycle time was the order entry process,
which accounted for four weeks or more. Thus, although we eventually arrived at an
appropriate focus for the study, we would have gotten there much more efficiently had
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the initia! focus been on something broad like “remaining profitable in the face of faster
competition,” instead of the restrictive “improving painting efficiency.”

A basic tool for sifting through a complex manufacturing system and picking out the
most important aspects is Pareto’s law, also known as the 80-20 rule. Pareto originally
offered it as the law of economics that 80 percent of the wealth is owned by 20 percent
of the people. Applied morc generally, it states that a large fraction of any problem (or
benefit) is caused by a small fraction of the constituents. For instance, a small percentage
of part numbers accounts for the majority of demand, a small number of maintenance
iterns accounts for the majority of the maintenance budget, a small number of customers
accounts for both a large fraction of sales as well as complaints.

Pareto’s law can be used as a management guide, suggesting the “important few”
be given separate treatment from the “less important many.” The few high-volume part
numbers might be dedicated to efficient flow lines, while the many lower-volume part
numbers are produced in a less efticient job shop environment. The few high-volume
materials might be delivered in daily just-in-time fashion, while the many low-volume
materials are purchased and stocked in bulk. The few machines accounting for a large
fraction of downume may have dedicated repair kits and specialized procedures, while the
many machines causing less downtime are handled with routine maintenance procedures.
The few big customers might be (probably wilt be) given preferential treatment relative
to the many small customers. In each case, the idea 1s to allocate limited resources to
the places where they wilt do the most good.

Pareto’s law can also be used as a simplification tool. For instance, the routings in
a manufacturing plant may seem like a hapelessly intricate mess when all part numbers
are considered. But when only major families are considered, a much simpler pattern
may emerge. Studying this simplified system is likely to be tractable and to lead to an
understanding of the essennal behavior of the overall system,

19.3.2 Factory Physics Laws

Once the system has been pared down to a manageable tevel using Pareto’s law, the fun-
damental tools at the disposal of a systems analysis team are the laws of tactory physics.
First and foremost, these offer intuition about the way a manufacturing system will tend
to behave. Additionatly, they pravide analytical methods that can be supplemented by
many ather modeling and analysis techniques as appropriate to the particular study.

The following is a summary of the key factory physics principles that have been
introduced in this book.

Law (Little’s Law):
WIP =TH x CT
Law (Best-Case Performance): The minimum cycle time for a given WIP level w is
given by
To if w < Wy

CThest = ur .
; —  otherwise
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The maximum throughput for a given WIP level w is given by

Y HweW

— 11w
THyewr = { To =0

ry otherwise

Law (Worst-Case Performance): The worst-case cycle rime for a given WIP level w
is given by
CTuorse = wTp

The worst-case throughput for a given WIP level w is given by

THwomz“T_
a

Definition (Practical Worst-Case Performance): The practical worst-case (PWC)
cycle time for a given WIP level w is given by

w—1
CTpwe =To +

s
The PWC throughput for a given WIP level w is given by
w

THpwe = ————
S Worw—1"

Law (Labor Capacity): The maximum capacity of a line staffed by n cross-trained
operators with identical work rates is
n
THoax = =
ax T()

Law (CONWIP with Flexible Labor): In a CONWIP line withn identical workers
and w jobs, where w > n, any policy that never idles workers when unblocked jobs are
available will achieve a throughput level TH(w) bounded by

THew{(n) < TH(w) < THew(w)
where THew (x) represents the throughput of a CONWIP line with all machines staffed
by workers and x jobs in the system.

Law (Variability): Increasing variability always degrades the performance of a
production system.

Corollary (Variability Placement): In a line where releases are independent of
completions, variability early in a routing increases cycle time more than equivalent
variability later in the routing.

Law (Variability Buffering): Variability in a production system will be buffered by
some combingtion of

1. Inventory
2. Capacity
3. Time

Corollary (Buffer Flexibility): Flexibility reduces the amount of variability buffering
required in a production system.



Chapter 19 Synthesis—FPulling It All Together 653

Law (Conservation of Material): [n a stable system, over the long run, the rate out

of a system will equal the rate in, less any vield loss, plus any parts production within
the system.

Law (Capacity): In steady state, all plants will release work at an average rate that
is strictly less than the average capacity.

Law (Utilization): If a station increases utilization without making any other
changbs, average WIP and cycle time will increase in a highly nonlinear fashion.

Law (Process Batching): In stations with batch operations or with significant
changeover times:

1. The minimum process batch size that yields a stable system may be greater
than one.

2. As process baich size becomes large, cycle time grows proportionally with
batch size.

3. Cycle time at the station will be minimized for some process batch size, which
may be greater than one.

Law (Move Batching): Cycle times over a segment of a routing are roughly
proportional to the transfer batch sizes used over that segment, provided there is no
waiting for the conveyunce device.

Law (Assembly Operations): The performance of an assembly station is degraded
by increasing any of the following:

1. Number of components being assembled.

2. Variability of component arrivals.

3. Lack of coordination between component arrivals.

Definition (Station Cycle Time): The average cycle time at a station is made up of
the following componenis:

Cycle time = move time + queue time + setup time + process time
+ wait-to-batch time + wait-in-batch time
+ wait-to-match time

Definition (Line Cycle Time): The average cycle time in a line is equal to the sum of
the cycle times at the individual stations, less any time that overlaps two or more
stations.

Law (Rework): For a given throughput level, rework increases both the mean and
standard deviation of the cycle time of a process.

Law (Lead Time): The manufacturing lead time for a routing that yields a given
service level is an increasing function of both the mean and standard deviation of the
cycle time of the routing.

Law (CONWIP Efficiency): For a given level of throughput, a push system will have
more WIP on average than an equivalent CONWIP system.

Law (CONWIP Robustness): A CONWIP system is more robust to errors in WIP
level than a pure push sysiem is 10 errors in release rate.
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Law (Self-Interest): People, nor organizations, are self-optimizing.
Law (Individuality): People are different,

Law (Advocacy): For almost any program, there exists a champion who can make it
work—uat least for a while.

Law (Burnout): People get burned out.

Law (Responsibility): Responsibility without commensurate authority is
demoralizing and counterproductive,

194

19.4.1

A Factory Physics Parable

In this book we have introduced a host of widely varied concepts in order to develop the
perspective, intuition, and tools for designing and improving manufacturing systems.
To illustrate how many of these factory physics pieces might fit together in a systems
analysis project to improve a specific system, we now consider a case study. The scenario
is actually a composite of many different companies. Much of the data come from an
excellent case by Bourland (1992). However, any lack of literary merit is entirely the
responsibility of the authors.

Hitting the Trail

It was 6:20 on a Friday afterncon when Carol snapped her briefcase shut and stood up
to go. Her one thought was, Time to hit the srail! She had been promised a week’s
vacation when she joined Texas Tool and Die as manager of manufacturing engineering
four months ago. But every time she made plans, a plant crisis forced her to postpone.
Not this time. 've been wanting to go riding in west Texas for years.

Before she could reach the door, the phone rang. Not again! She knew she shouldn’t
answer it, but her travel agent had said he might call with some last-minute schedule
changes. So, gingerly, she picked up the phone. '

“Carol Moura.”

“Carol. Claude. Good thing you're still here. Milling is out of control again, and
Bill wants us in his office now. I'll come by.”

Carol clapped the phone into the receiver hard. This will never end! Not since her
freshman year as an engineering student at Michigan State, far from her tight-knit family
in Connecticut, had she felt so alone and depressed.

On the way to Bill's office, Claude Chadwick, a production manager, chatiered on
about the current situation, making sure to stress how critical Carol was to & solution.
Sure. All he wants is for someone to do his work so he can get out this weekend. Him
and his marketing MBA. He doesn’t care about the plant. It's just a stepping stone to
bigger and better things. “Doing my time,” he says. As if the plant is a prison.

Carol's jaw tightened as she spied the sign on the office suite—William Whyskrak,
Vice President of Manufacturing. Bill Whyskrak! “Wiss-krek” he pronounces it. He's
forever finding ways to make me look bad. Like that time in printing. First he tells me
my cart-sharing idea for reducing cycle times is the stupidest thing he ever heard. Then
he gives me a royal chewing out for going ahead with it. But when it worked, he takes
all the credit. Worse, be tells Mr. Walker now he’d been trying to get me fo do it for
weeks and that I had been dragging my feet. Mr. Walker told him to “keep up the good
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work,” but only smiled at me. What did that mean? Well, I was looking for o job when |
found this one.”

In his office, this time Carol doesn’t even give Bill time to explain the latest crisis.

“Bill, I've postponed my vacation three times now. 1deserve this time off, If I don’t
go now, | never will. See you in a week.”

That wasn't s¢ hard. On her way to the airport she began to forget the plant. It was
earty May., the flowers were gorgeous, the weather clear and coel. She let herseif relax
and started 1o enjoy the drive. A week with nothing but my horse, sleeping bag, slicker,
and hat to think about. My only problems will be food and water, and there’s plenty of
that on the wageon. It’s going to be & good week.

Carol spent the first three days on the trail trying not to think about the plant, and
mostly succeeding. But on the morning of the fourth day, it forced its way into her
consciousness. What have T really accomplished in four months? A few small things
and a lot of crisis management. But I haven't urned things around by a iong shot. Bill
has no faith in me. Maybe Mr. Walker doesn’t either—I can never tell with him. Maybe
{ won't have a job when I get back. I was looking hard for a job when 1 found this one.

Bob McAlister, the trail boss, broke her reverie by pulling up to ride alongside her.
“Good thing that horse knows where to go.”

“What do you mean?" So far, she had had little to do with Bob. He was usually busy
making sure everyone’s gear was right and had been quiet the rest of the time. Almost
ail he had said to her was, “Mormin® Ma’am.” Even when he checked her saddle girth,
all he did was pat the back end of her horse and tip his hat. Bob really seemed to fit the
image of the silent cowboy.

“What T mean is that you're not here. You're back there. If you're going to spend
good money to get away from there, why do you want to bring it here?”

“You’re pretty smust,” Carol admitted.

“You got to have a PhD in psychology to be a trail boss—state law, you knew.” Bab
was the kind of Texan who liked ta make outrageous statements with a straight face and
see how long it took the non-Texans to catch on. “Trail ridin’ takes brains, Your horse
ain’t gonna tell you he’s goin’ lame, and that mama cow aver there ain’t gonna e-mail
you she’s runnin’ dry. 1t's clear that somethin’s botherin’ you. Why, you're twitchin’
like a long-tailed cat in a room full of rockin” chairs.”

Carol laughed. “You're right. I've been wondering if I'll have a job to go back to.”

“Maybe I can help. I know you're some Kind of big engineer at a plant. I'm
no engineer, but you never know, comin’ at it from a different angle, I might just see
somethin’. Anyway, we got a long way to ride today, and we might as well tatk a spell.”

“All right, but I'm warning you, it’s technical. We make parts and assemblies for
aircraft. I'm responsible for making hubs. We get orders...”

Carol talked for 10 minutes before Bob interrupted, “I don’t want to know all that.
I’m a simple cowboy——just give me the basics. You're tryin® to take one piece of metal
and tum it into a different piece, right?”

“Yes, but there are a lot of different pieces...”

“And after you do it, you want to sell the right number of the right piece of metal to
the right customer, right?”

“Of course, but there are ail kinds of...”

“And you need to do ail this with the equipment you got in your plant right now,
right?”

“Yes, but...”

“And you want to do it without keepin’ your customers waitin’ or havin® a lot of
extra stock layin’ around, right?”
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“Yes, but it’s a complicated plant. The issues are just not that simple!”

“Who said they were? But | know one thing.”

“What's that?”

*Details may not be simpie, but principles are!” Bob pulied out his canteen, took a
drink and offered it to Carol.

Carol took a drink, wiped her mouth, and asked, “OK, what are the principles? I've
taken every short course there is and have come to the conclusion that for every expert
telling me to do one thing, there’s another expert telling me to do something else.”

“Well, 1 don't really know.”

Carol rolled her eyes. “Great! Maybe I can get a job shoeing horses.”

“Wouldn't recommend it. Too hard on your back. What I do know is that there
are principles and the important ones ain’t that hard. You know, like an apple fallin’
from a tree. Sometimes the principle is just hidden. You can’t see the forest for the
trees—that is, if you got trees. Out here I guess it's the hill for the rocks.” Bob surveyed
the landscape and continued.

“Anyway, a couple years ago, the Extension Service sent out this young expert to
make the local feed co-op more efficient.” Bob nearly spat out the word expert. “By the
time he was finished, the place was a mess. | was so mad, I stood up in a meetin’ and
said a ol’ cowpoke like me could’ve done a better job. Durned if they didn’t vote me
president that year, Well, [ had to do somethin’ then. So, I went in, called a meetin” and
asked a single question, just one: What in the world is it we're tryin’ to do here?

“You should’ve seen the looks I got. They thought I was dumber than dirt. But when
folks started answerin’ the question, the place really heated up. We got somethin’ like
20 different answers and almost a fight or two. But folks got the picture. Nobody had
any idea what we were trying to do. So we sat down, agreed on some goals, and figured
out ways to make "em happen. Actually, it was pretty simple once we got started.”

“But what were the principles?” Carol asked. But Bob wasn’t looking at her. He
was staring at one of the horses near the front of the line.

“Pardon, Ma’am, but it looks like we got a runaway. Talk to you later.” Bob spurred
his horse and took off after a galloping mare carrying a frightened boy.

Bob stopped the horse and returned the boy to his mother in short order. But his
horse had lost a shoe. It stumbled on the way back to the group and threw Bob to the
ground. His knee hit a rock and knocked a pin loose from an old rodeo injury. Jedidiah
the cook took him to the first tanch house they came to and he was hursied to the hospital.
The damage turned out nat to be serious, but Bob wouldn’t ride again for a month,

After the excitement had died down, Carol began to think about “principles.” If
only my problems were that simple. But then, I don’t think the co-op problem was all
that simple, no matter what Bob says. After all, the “expert” wasn’t able to solve it.
Maybe most people’s problems are just as hard as mine. Maybe everyone has to look

for principles of some kind. Like the apple falling from a tree. That’s physics. But
7 have a factory to manage...Wait a minute, what about that factory physics I learned
about in B-school? Didn’t that have principles that are supposed to be relevant fo
factories?

For the rest of the trip, Carol continued to muse about using principles to figure out
what was wrong with the plant and fix it. She soon realized she would need help. Jane
Snyder—she was just promoted to manager of marketing—she seems sharp. And Ed
Burleson, the manufacturing engineer who came in with me, is a computer whiz. Both
strike me as go-genters. What principles do they use? Maybe I can get them together
and we can develop a plan. Of course, we can't spend much money. Bill would never go
for that. But we could do pretty much whatever we want on the plant floor. No one really
pays attention to thatr—until the end of the quarter—or when customers are screaming.
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i hear they're going 1o sell the plant, But if we can make the operation run better, we
might just keep our jobs,

19.4.2 The Challenge

Texas Tool and Die, which was founded in the 1950s, makes compoenents for the aircraft
industry at a single plant near Fort Worth, Texas. Two years prior to Carol’s arrival, TTD
had been bought out by an investment group that hoped to improve operations and sell it
for a profit. An immediate reorganization brought in Bill Whyskrak, a polished speaker
with management experience in several industries, and his assistant Claude Chadwick.
But despite the changes and a major influx of capital, profits had steadily declined in the
face of increasingly stiff competition from firms with lower prices and better customer
responsiveness.

The managing owner was a man named Sam Walker, who had started his career as
a design engineer and had worked his way into management. Sam was convinced that
they had to find ways to increase throughput (to lower unit costs so they would allow
more competitive pricing) and to reduce cycle times (so they could offer competitive
customer deliveries). He directed Bill to bring in more manufacturing talent-—which
led to the hiring of Carol Moura, 4 manufacturing engineering manager with 10 years
of experience and an MBA in operations, and Ed Burleson, a manufacturing engineer
with a BS in industrial engincering. Two months after Carol and Ed came on board,
things had gotten so bad that some of the investors were at the point of wanting to sell
the company, take their losses, and move on. Sam convinced the other owners to give the
throughput enhancement and cycle time reduction efforts one more chance. The other
owners agreed to six more months of operations, with the stipulation that no large capital
expenditures be made.

19.4.3 The Lay of the Land

Historically, company policy had been to collect customer orders during the week and
group them into jobs every Friday. In its product catalog, TTD promised delivery four
weeks after the close of business on Friduy. Unfortunately, the competition was offering
three-week lead times and had been steadily reducing these each year. Worse, TTD had
not been able to achieve even the four-week target with regularity. Average cycle time
for some parts was well over gight weeks.

Although average demand was still high, it was variable, to the point that there were
times when there was almost no demand for the week. Figure 19.1 shows the aggregate
demand for the previous year. Table 9.1 gives projected demand for the next year for
the four largest-selling products, which accounted for 90 percent of total demnand, along
with the lot size for each product. Demand for other products was met by production
from a job shop separate from the part of the plant that produced hubs 1 through 4.

Several months before Carol and Ed had arrived, Bill and Claude had organized the
main processes for producing hubs 1 to 4 into a cellular layout in an atiempt 1o reduce
cycle times by eliminating unnecessary material handling, The anticipated reduction
had yet to materialize. The cell consisted of three benches (which served as preparation
stations), four vertical lathes (VTL}, one deburring station, four inspection stations,
two mills, two drills, and one rework station. All machines were subject to occasional
breakdown. Table 19.2 gives data gathered on mean times to failure and mean times to
Tepair.

There were 14 workers in the cell, with three prep workers assigned to the benches,
three repair operators assigned to the deburr and rework stations, three inspectors
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Ficure 19.1

Total demand for previous
year
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300 -

250 -

200+
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100

Week

TaBLE 19.1 Average Demand

and Lot Sizes
Average
Part Demand Lot Size
Hub 1 2,100 40
Hub 2 1,700 30
Hub 3 2,000 44
Hub 4 1,500 30

assigned to the inspection stations, and five machinists assigned (o the lathes, drills,
and mills. Figure 19.2 shows the layout of the facility, along with the kabor assignments.
Due to breaks—scheduled and unscheduled—workers were generally considered avail-
able only S0 percent of the time.

The sequence of operations (routing) for hub 1 is shown in Figure 19.3. Run times,
setup times, and labor times are given in Table 19.3. Because many of the operations
were automated, the labor time for some operations was less than machine time, so it
was possible for an operator to monitor multiple machines, The routings and process
times for the other products were similar to those for hub 1!

As Figure 19.3 shows, an average of 15 percent of the hub 1 parts were found to
be defective at the inspection station. An average of two-thirds of these were sent o
rework; the others were scrapped. In rework, an average of 20 percent were reworked
without success and were eventually scrapped. The remaining 80 percent were reworked
and sent back to inspect, where they might or might not be certified as good parts.

I'The details of all the parts are not central (o our story. The interested reader is referred o Bourland
{1992) for other details of the case.
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TasLE 19.2 Equipment Data

Reliability
Equipment Number in Labor Group
Group Group MTTF (hour) MTTR (hour) Assigned
Bench 3 160 R Prep
VTL 4 160 16 Machinist
Dieburr | 80 8 Repair
Inspect 4 40 8 Inspector
Repair 1 160 8 Repair
Mili Z 8O 4 Machinist
Drilk 2 160 4 Machinist
FiGure 19.2 FIGURE 19.3
Cell layout Operations und roufings
Bench
P P
P Drill
Vertical lathe
VSR 1 |
LIl J| ‘
C 3| » -
I | | |
Debpurr
Inspect
L]
¥ I | [ |
RRER i 1 |
l _I 1 I rSCrap ] -Stock
Key for labor:
Rework P = Prep, R = Repair

M =Machinist, [ =Inspector

Each hub was composed of four to six mountings and a single sleeve. Each mounting
was composed of two brackets and two bolts. The brackets, bolts, and sleeves were all
purchased from outside suppliers. Since these parts were common to many assemblies,
TTD tended to keep ample stocks of them. Table 19.4 gives the process times for the
unpacking and inspection of the purchased parts. The assembly of the mounts, sleeves,
and hubs took place in the assembly area, which seemed to have sufficient capacity and
rarely failed to keep up with the cell.
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TaBLE 19.3 Operation Assignments and Process Times for Hub 1

Time at Equipment Labor Times
Setup Time Run Time Setup Time Run Time
Operation Equipment (minute) (minute/piece)} (minute) {minute/piece}
HBench Bench 0 10 0 10
Rough tum VTL 180 17 180 15
Deburr Deburr 0 10 ] 10
Finish tum VTL 120 26 120 20
Inspect Inspect 7 12 7 7
Rework Rework 9G 32 90 32
Slot Mill 60 60 60 40

TasLk 19.4 Operation Assignments and Process Times for Purchased Parts

Time at Equipment Laber Times
Setup Time Run Time Setup Time Run Time

Operation | Equipment {minute) {minute/piece} (minute} (minute/piece)
Muounting

Unpack Bench 12 2 12 2

Inspect Inspect 0 3 0 3
Bracket.

Unpack Bench 12 0 12 0

Inspect - Inspect [ 0 4 H
Bolt

Unpack Bench 12 0 12 0

Inspect Inspect 12 0 4 o
Sleeve

Unpack Bench 12 3 12 3

Inspect Inspect 0 3 0 3

19.4.4 Teamwork to the Rescue

Carol returned from her vacation rested but anxious. There were seven progressively
shrill calls from Bill Whyskrak on her voice mail. Big surprise. Before returning them,
she called Jane Snyder and Ed Burleson—who both agreed that the plant was in big
trouble—and asked them to meet her after work at the local watering hole. They agreed.
Then she called Bill and endured another haranguing.

No sooner had she hung up than Claude slithered into her office with his version of
the past week's disasters and bitter complaints about having to work all weekend. About
time! When he had gone {Finally!), Carol moved the pile of unanswered mail to the side
of her desk (It'll keep one more day), got out her old Factory Physics text (Dusty but it
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still looks almost new), and began looking for “principles.” When it was time to go 1o
the bar, she was ready.

Principles. **“Whatin the world is it that we’re trying do do?” Carol asked as she, Jane,
and Ed waited for the beer und nachos 1o arrive. After some discussion of basic concerns
like “keep our jobs,” the three agreed that two fundamental problems were driving costs
up and revenues down: insufficient throughput and excessive cycle times. If they could
make a significant difference in these, they believed TTD could be made profitahle.

Carol had anticipated this and was armed with some principles from Faciory Physics.
She began by pointing out that Little's Law shows that throughput and cycle times are
related: )

Law (Little’s Law):

WIP=TH x CT

“Cool!” Ed observed. “If we can get throughput up to capacity and keep it there,
then reducing WIP will reduce cycle time.”

“Fxactly!” Caroi knew there was a reason she had asked Ed along, “Except that we
have to be careful about aiming for capacity.” She displayed her next factory physics
law.

Law (Capacity): In steady state, all plants will release work at an average rate that
is strictly less than the average capacity.

“Okay. That’s what | meant, actually. Everyone knows that machines can’t run all
the time.”

“Oh yeah?” Jane raised her eyebrows. “How many times have you heard Biil
screaming for 100 percent utilization of the lathes? But if we're going to talk about
principles, let’s Jeave Bill out of it.” Ignoring Ed’s groan, Jane went on. “Carol, I'm
wondering about that Little’s Law. It looks like we can get the same throughput with
small WIP and smali cycle times or big WIP and big cycle times. It’s pretty clear which
calegory we fall into, but what's the difference?"

“T couldn't have set it up better myself.” Carol smiled and presented her next law.

Law (Variability): Increasing variability always degrades performance of a
production system.

“and [ found one more that follows up on the variability theme.”

Law (Variability Buffering): Variabifiry in a production system will be buffered by
some combination of

I. Inventory
2. Capacity
3. Time

“The book also refers 1o this as the pay-me-now-or-pay-me-later law,” she said.

“Nice name,” grinned Ed. “But what's it mean?”’

“Tt means we have either too much variability or too much WIP. But if we keep WIP
t0o low, we lose on throughput and so we have a capacity buffer,” Carol explained.

“How could we be keeping WIP too low? I thought we had teo much WIP”
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*Whenever we turn off releases because WIP has gotten out of hand, we lose through-
put.”

“You mean like the week you were gone.”

“Uh huh. But before we can even talk about a reasonable target throughput, we
need to know what our capacity is.”

“How do we do that?”’

“You guys up for a walk? Let’s go back to the plant,” Carol suggested, as she picked
up the check.

The scene at the manufacturing cell was all too familiar. The trio found WIP piled
high in front of the bench operation, vertical lathes, and the milling machines. Things
were so bad that the prep workers had just returned a load of materials to the store-
room to relieve the congestion. The machinists were complaining that they were being
overworked again as the repair operators were “just sitting around.” When questioned,
an idle repair operator explained that his load was sporadic; he couldn’t help it if he
sometimes ran out of work to do. '

“We've got our work cut out for us,” said Ed as they walked out to the parking lot.

“But where do we start?" asked Jane,

Carol reached her car first and unlocked the door. *I suggest we listen to the
machinists. Maybe they are overworked. I'm going to min some numbers. Let’s talk
about it tomorrow, okay Ed? Night, Jane.”

“Night.”

Capacity Analysis.  The next morning, Carol set up a spreadsheet and did a quick
estimate of the utilization levels of the machinists and repair operators. She did this by
calculating the total load generated by production needed to meet demand, including
setups, at the current lot sizes. This showed that the average workload of the machinists
was indeed higher than that of the repair operators. Ed determined that one repair operator
could be moved into the machinist pool without compromising the ability of the repair
operators to do their work. Fortunately, one of the operators had worked as a machinist,
was bored with his repair job, and welcomed the move. Since no one could come up
with a reason not to, Caro! talked the foreman into making the switch that afternoon.

Cycle Time Analsyis. What to do next was not so obvious. Carol’s simple spreadsheet
did not suggest any more easy labor reassignments, and no one could offer a clear idea
of how variability was affecting the system. Almost for lack of anything else to do, Ed
volunteered to develop a simulation of the facility. After a week of coding, debugging,
and preliminary runs, he had a basic working model. He was pleased to be able to show
Carol and Jane that his simulation predicted extremely long (indeed unstable} cycle times
in the cell when staffed by three repair operators and five machinists. However, if one
repair operator were reassigned, so that there would be two repair operators and six
machinists, the simulated cycle times dropped to between four and seven weeks, with
hub 1 having the longest.

“It looks like we did the right thing,” he concluded with a grin, “Cycle times should
be coming down soon.” ’

And for a while the system really did seem to be improving. Two weeks after
reclassifying the repait operator as a machinist, throughput was up noticeably. Butcycle
times were still well above the levels predicted by the simulation. The team was puzzled
at the discrepancy and rechecked the process times on the machines. The times used in
the simulation were found to be, if anything, longer than those observed in the actual
system.
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“It’s not the rate data.” Ed looked up from his keyboard. “What else could be
making the cycle times so much longer than the model says they should be? Do we have
any other data we could check?”

“Not many,” Carol admitied. “But we do have these WIP sheets. What does the
simulation say about WIP?”

“Idon’t know. I'll run it again and generate WIP-versus-time charts for the different
equipment groups.”

“Good. I'll make up the same charts from these sheets. Let’s meet for coffee around
four. Il call Jane.”

Four o’clock found the tcam members hunched over a cafeteria table, studyiang the
two charts. They did not look anything alike. The simulation model predicted fairly mod-
est increases and decreases in WI1P, while the actual WIP charts showed huge “bubbles”
of WIP that drifted through the plant.

“What's causing that?” Jane asked.

“Queueing,” Carol answered.

“What's that eguation for queue time again?” Jane reached for the no-longer-dusty

copy of Factory Physics.
“Whoa!” Ed feigned falling out of his chair. “A marketing person asking for an
equation!”

“Give me a break! Marketing is guantitative, you know. Here it is.”
Utilization

e + ¢t e
Ty = ’ 2 X 1—1u x t
e -
Variability Process time

Jane studied the formula carefully and mused, “Hmmm. Since our process times
are conservative, utilization must also be conservative, since the throughput is right.”

“Wow! T guess you marketing types do know your way around an equation,” said
Carol, obviously impressed.

“Sa it must be in the variability numbers,” Ed added swiftly, not wanting to be
outdone in the technical analysis department.

“Which one?” Jane asked.

“Well, the ¢-sub-¢ number could be big, but not that big. And I don't see how the
c-sub-a number can gel very hig either,” Carol said with a puzzled look.

“What are c-sub-¢ and c-sub-g?” asked Jane.

“The c-sub-e is a measure of how variable the machine process times are, whiie the
c-sub-g measures the variability of arrivals,” Ed explained, a little relieved to have an
opportunity to display his knowledge.

“What does it mean for artivals to be variable?”

“If they don’t come in one at a time, regularly, like clockwork, then they're variable.”

“Well, of course they don’t come in like that. We release jobs in week-long batches,
It’s part of our marketing strategy,” Jane explained,

“HeHo!" Ed grinned. “Maybe you better tell us mare about that sirategy.”

“We publish a lead time to our customers. Any order we get during a given week
will be delivered four weeks later. The close-out day is Friday. Orders are batched
over the weekend and then sent to the floor on Monday. We’ve been doing it for years.
Efficiency considerations. you know.”

“Well, it might make things more efficient, but F'll bet it’s driving the heck out of
cycle time. No wonder we see all these WIP bubbles.” Carol said and wrned to Ed.
“What c-sub-a do we have in the model?”
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“For lack of a better number, we used one, the usual exponential assumption.” Ed
snuck a glance over at Jane to see if this technical talk was making her nervous. It wasn’t.

*Probably way too low. My guess would be more like 10,

“It might even be worse,” Jane added. “There’s a lot of variability in our demand as
well. Take a look at this.”

The chart (Figure 19.1) showed that total weekly demand for the past 12 months
averaged 146 pieces, but ranged between 6 and 284. Thus, while the capacity of the
plant was around 160 parts per week, it was faced with a “feast or famine™ situation.
Clearly, this meant that in some weeks the plant was starved for work, while in others it
was completely swamped.

Ed stood up. “I’ve got to change the way I model demand. I'll talk to you tomormow.™

Carol accompanied Jane back to her office. “Jane, what would happen if, instead
of publishing a fixed lead time, we quoted delivery dates to our customers. And what if
those dates were closer in than four weeks?”

“Well, getting lead times below four weeks would be great. The competition is
killing us on that, And 1 guess most of our customers would probably like a quotation
better—provided we deliver on time. But some customers have their MRP system loaded
with our lead time. Could we have a fixed lead time for them?”

“1 think so, at least most of the time. But when we're really busy, we may not be
able to meet the fixed lead times.”

“Actually, now that I think of it, that might not be so bad. Usually, when we're
swamped, so are our competitors.”

“Good point. The main thing, though, is that we’ll be able to quote shorter lead
times on average.”

“Qur customers witl like that. What do we need to do?”

“Ig’s called due date quoring, and we can do it for each of our product lines. This
gives some details.” Carol handed Jane the Facrory Physics book. “See the chapter on
scheduling.”

“All right, I'll get on it.”

The next morning, Ed was in Carol’s office early.

“Got it! 1 changed the arrival processes, and the simulation matches on cycle times
pretty well. Now what?”

“Now we get 1id of those WI1P bubbles,”

“How?”

“Well, I think a pull system will smooth the workload. I'll work on that. You see if
you can find ways to reduce process variability. Okay?”

“Sounds like a plan.”

During the next month, Carol set up a CONWIP system in the cell. The mechanics
were simple, basically consisting of nothing more than laminated cards to limit WIP and
the standard work list to sequence releases. More challenging was breaking the tradition
of bulk releases. Carol carefuily involved the operators in the implementation process,
and even shut down the cell for a two-hour “all hands” orientation meeting. (She thought
Bill was going to burst a vein over that!) To the operators, CONWIP seemed almost
obvious; after all, why release work into the cell until there is capacity to work on it?
A couple of people in production control, who were responsible for running the MRP
system that scheduled the bulk releases, initially raised some objections about having
their schedules overridden by the CONWIP system. But Jane helped Carol win them
over, by stressing the marketing value of shorter cycle times.

Meanwhile, Ed searched his simulation and the cell for large sources of variability
in effective process times. At first, the process times seemed extremely regular, since
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processes were largely automated. Then he realized that he needed to consider the effect
of downtimes that averaged from 4 to 16 hours on the various machines. Ed performed
a Pareto analysis of previous tailures and found that most of the maintenance calls were
the result of a small set of problems. He and the maintenance superintendent developed
efficient procedures for handling the most common problems and then documented them.
Where appropriate, they also installed field-ready replacement kits. The result was that
mean time to repair on all machines dropped to less than four hours. Although they
would not have data to document it for months, the beneficial effects on the line were
felt almost immediately.

After the blowup about Carol’s CONWIP meeting, Bill mysteriously emerged as a
convert to JIT. He gave Carol and Claude a popular JIT book and ordered Carol to install
a kanban system in the cell and Claude to implement JIT deliveries of raw material.
Carol ignored the book, but was careful to refer to her CONWIP system as a kanban
system whenever she spoke to Bill. Luckily for her, Bill didn’t have time to pay toe
much atiention to what she was doing because of problems with Claude’s policies.

With Bill's blessing, Claude changed from purchasing commonly used pieces of bar
stock in ane-month supplies to having daily deliveries from a local vendor. Raw material
inventory dropped by BO percent, but delivery charges went up dramatically as well. Bill
stepped in and threatened to cancel the contract because of the higher delivery cost. The
offended vendor responded by canceling the contract himself. The production schedule
was badly scrambled, and production came to a virtual halt for almost two days before
Sam Walker smoothed things over with the vendor and reestablished the supply.

Also at Bill's instigation, Claude began a plantwide setup reduction program that
made use of single minute exchange of die (SMED) techniques Ed had developed pre-
viously for a specific machine. Because these techniques did not apply universally and
because effort was spread over so many processes, Claude got off 10 a slow start. By
mid-July, after almost two months’ work, he had achieved significant settp reductions
only in the labeling area. However, about the time Claude’s program was beginning 0
stall, Ed became copvinced from his ongoing simulation study that setup reduction was
important on the VT lathe, dniling, and milling. He took over (unofficial) leadership of
this part of the program, and by the end of August they had reduced the setup times of
the VT lathe, drilling, and milling by 50 percent. With these and the other changes they
had made, Ed’s model predicted cycle times of 9 10 22 days, compared with the original
5 to 9 weeks,

At the next team meeting, Carol copied the basic cycle time equation from the
increasingly ragged copy of Facfory Physics o the board:

Definition (Station Cycle Time); The average cycle time at a station is made up of
the following components:

Cycle time = Move time + queue time + setup time + process time
-+ wait-to-batch time + wait-in-baich time + wait-to-match time

“The way | see it, CONWIP and due date quoting have brought queve times down
by something like 80 percent. Process times and move times were never big. Wait-to-
match time doesn’t apply in the cell. So, the only remaiming area o be addressed is
wait-for-batch time.” Carol sat down. “Ed, what move batch sizes are we using in the
model?”

“The ones they use in the plant. They were computed using the square root formuia.
I think. Why?”

“§q the batch sizes are the same for both move batches and process batches?”



BT e 4 e

RN Sl

666 Part Il Principles in Practice

“What do you mean by move batch and process batch?” Jane asked. “T've never
heard anyone here use those terms.”

“That could be our probiem.” Carol answered. “The process batch is how many
parts we run between setups. The move batch is how many we move at once to the next
operation. They don’t have to be the same.”

“Why didn’t I think of that!” Ed began sliding his chair back. “Let me see what
happens in the model if we leave our process batch sizes alone but make all the move
batches in the cell equal to one.”

“Wait. Let me get this straight,” Jane jumped in before Ed could escape. “You
mean, like for hub 1, we process 40 units before changing over to another hub but move
them one at a time as soon as they’re done?”

“Exactly!”

Carol was confident that she knew what Ed’s simulation would show. Smaller move
batches would result in shorter cycle times. But while she was waiting for him 1o estimate
the size of the reduction, Carol began thinking about the process batch sizes. Since we
reduced setup times, we should be able to reduce batch sizes as well. But how much?
That silly EOQ formula won'’t help because we have no idea what setup cost should be.
Besides, the interaction between the batch sizes of the various hubs is probably complex.
Wasn’t there something in the scheduling chapter about optimal batch sizing ro minimize
cycle times?

She picked up the phone to call Ed, but he walked in before she had a chance to dial.

“Good news! The cycle times should drop another 30 percent by simply making
the move sizes equal to one. But I think we could do even better if we adjust the process
batch sizes, so I started reading in Chapter 15 about...”

“Optimal process batch sizes! You’re reading my mind. I was just calling you to
suggest we fiddle with process batch sizes.”

Carol and Ed spent a few hours building an optimal batch-sizing model. Using it
along with some trial-and-error, they settled on the set of batch sizes shown in Table
19.5. The next morning Ed met with the shop superintendent, who readily agreed to the
changes in process and move batch size. Congestion in the cell steadily declined. By
the end of September, cycle times had fallen to between four and seven days.

19.4.5 How the Plant Was Won

October was judgment time. Sam Walker gave Bill responsibility for organizing an
overview of the improvement program at a meeting of the owners. Bill told Carol and
Claude that he’d handle the presentation himself. Carol made up some slides anyway,
just in case. Claude did not.

TaBLE 19.5 Recommended Batch Sizes

and Resulting Cycle Times
Recommended Predicted
Part Batch Size Cycle Time
Hub 1 10 6.7
Hub 2 15 34
Hub 3 20 5.6

Hub 4 15 37




Chapter 19 Svnthesis—Pulling It All Together 667

Sarmn began the meeting with a brief overview of how much output had increased,
cycle times had decreased, and customer relations had improved. He concluded with,
“And now I'm going to ask Bill to tell us just what was done to make this good news
possible. Bill?”

Bill was dressed to the nines and had slick color slides. A couple of owners even
laughed at his introductory jokes. He's going to pull this off! All the work we did, and we
won't get a shred of credit. Carol sighed as Bill moved into the core of his presentation,

“The key to our cycle time reduction program was recognizing what cycle time is.”
Bill put up his main slide, which showed:

Cycle time = Value-added time + non-value-added time

“Things like setup time, move time, unnecessary meeting time,” Bill emphasized
the last item with a glance at Carol, “are all waste. Or, as they say in Jupan, muda.
Eliminate muda and you’li reduce cycle times.” Bill flipped up the next slhide. “One of
our most successful efforts was reducing setups through the use of SMED techniques.
Take labeling for instance...”

“Wait a2 minute, Bill,” Sam interrupted. “Why do we want to reduce setup times in
labeling? We’ve got plenty of capacity there, and I've never seen much WIP in that acea.
What's the point?”

“Well, as 1 said, setups represent non-value-added time. They should be eliminated.”

“Is that what you were doing last winter in printing? I recall that once you got
Carol going, you eliminated a cart at cach table and had the operators share a single cart.
Seems to me like you added quite a bit of walking around. Isn’t that non-value-added?”

Got Carol going! Carol’s heart sank. He thinks I'm in the way!

“Well, er, it depends. In this case....” Bill's polished demeanor faltered just a bit.
“Claude, didn’t you want 1o say something about our lean manufacturing program to Mr.
Walker?”

Carol watched the panic rise in Claude’s face. Well, ar least I'm not the only one
Bill makes look bad. But Claude covered neatly.

“Well, I think it's pretty clear that the proof's in the pudding. As you can alt
see, Bill's program has really turned things around.” Claude turned from Bill to Sam.
“Regardless of what you call it, After all, we're here to run the plant, not name things.”

Some of the owners nodded in agreement. Sam was noncommittal and quickly
looked back to Bill. “Wasn’t there more to the program than setup reduction?”

“Yes. You'll recall that we also implemented just-in-time deliveries.”

“] remember.” muttered Sam under his breath.

“And we installed a simple kanban system in the cell that increases efficiency by
pulling parts between machines and...”

“Excuse me Bill,” Sam interrupted again. “I've been down to the cell and I believe
I’ve heard the operators relerring to the new system as CONWIP, not kanban. Why is
that?”

“Oh! Well,..., i’s basically the same thing. Actually, Carol helped me quite a bit
with that part, so maybe we should ask her.”

Carol swallowed hard and walked up to the projector,

“CONWIP stands for constant work in process and is #or quite the same thing as what
most people mean by kanban..,” Carol gathered steam as she spoke. She rolled through
the importance of variability, the effects of batching, and even putupa few factory physics
graphs. She showed plots of the progressively shorter cycle times predicted by the simu-
Jation model as improvements were incorporated. Her speech grew more rapid, her ges-
tures more animated. Before she knew it, she had spoken for 20 minutes without a single
interruption. She stopped and looked up anxiously for questions. The room was silent.
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“Thank you, Ms. Moura.” Sam had a sly smile on his face.

What can that mean? 1 must have talked too much, and I shouldn't have contradicted
Bill. Now ['ve done it!

“Thank you afl. This is a fine piece of work. Now, if yow'Il excuse us, I need to
wrap up with the owners.” Sam motioned them to the door.

As she filed out with Bill and Claude, Carol could hear the owners congratulating
Sam. One was shaking his hand, and Sam was smiling broadly.

*I think that went weil,” said Bill as soon as they were in the hall. “Except for you
boring them with your quantoid stuff, Carol. Kanban, CONWIP—nobody cares! But at
least we're still in business.”

“Yeah.” Carol didn't want to join the post mortem with Bill and Claude. “I've got
to take care of some things. See you.”

Forty-five minutes later, back in her office, Carol was mechanically answering
e-mail when the phone rang. It was Sam. They wanted her back in the conference
room. Filled with dread, she went.

“Hello, Carol,” Sam offered her a seat. ““We’ve been working on a few changes of
our own,” He flipped on the overhead projector, revealing an organization chart. Carol
hastily scanned it for her position. It was unfilled. Oh no! Well, I did it this time. Now I
am looking for a job! Me and my big mouth!

One of the owners said, “Congratulations, Carol!”

Congrandations!? Why that sarcastic... Carol looked back at the screen. In the
box labeled VP Manufacturing was her name. Next to it in the position of Manager,
Manufacturing Engineering was the name of Edward Burleson. Jane Snyder was listed
as VP Marketing for the division.

Sam read the question in her eyes. “We have already discussed matters with Mr.
Whyskrak, and he and Mr. Chadwick have decided to leave the company to form their
own concern.”

Carol sped down the hall in search of Ed and Jane. This called for more than beer
and nachos!

Carol was unpacking in her new office. She pulled out the battered copy of Factory
Physics, with its dog-eared pages and broken spine, and placed it gently on the shelf,
This is about to fall apart. 1 need a new copy. I sure hope it’s still in print.

When she had emptied and disposed of the boxes, she began sifting through her
mail. She spied a piece with a familiar name on it.

Whyskrak & Company
“We add value by eliminating waste.”

Sounds good to me! She tossed the flyer into the waste paper basket.

Then she pulled an old card from her organizer and dialed the number. After a
pause she said, “Bob? This is Carol Moura from Texas Tool and Die. Remember our
discussion about principles?”

This book has focused on manufacturing management, within the scope of operations,
and using factory physics as the unifying perspective. It is fitting that we close with an
assessment of what factory physics is and what we can expect from it in the future.
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. 1. Factory physics is a start to a science of manufacturing. We have argued that a
science of manufacturing is needed to enable managers to judge which policies will be
effective in their system and which will not. In the past 30 years or so, manufacturing
has been besieged by one “revolution™ after another—MRP, JIT, TQM, TBC (time-based
competition), BPR (business process reengineering), SCM (supply chain management),
and so on—each of which has undoubtedly contained useful insights. But because
each presents only a specific perspective, generally sold in fire-breathing revolution-
ary rhetoric and justified primarily in terms of anecdotal evidence, the manufacturing
manager has no basis on which to choose between them, combine features of different
approaches, or develop a unigue system adapted to the particular environment. Only a
science that describes the critical behavior and interactions in a manufacturing system
can provide the over arching understanding needed for this.

Our efforts in this book at the development of a science of manufacturing are far
from complete. However, we feel that we have at least framed the problem in the
correct context. While we have relied on mathematical formulas, we have not sought
a “factory mathematics.” Our focus has consistently been on the physical behavior
of manufacturing systems; mathematics are simply the language for describing this
behavior precisely. For example, the basic factory dynamics formulas of Chapter 7 were
developed in response to the question, How do WIP, throughput, and cycle time depend
on one another? By making various assumptions about the behavior of the plant (e.g.,
the best case, worst case, and practical worst case), we were able develop formulas
for the curves of throughput versus WIP and cycle time versus WIP. These relationships
sharpened our insight into questions like why many plants have excessive WIP levels,
why variability reductions can reduce cycle times, and how improvements in a production
line can be characterized. However, these formulas are certainly not the final word on the
WIP, throughput, and cycle time relationships. In Chapter 12, we returned to these curves.
and showed that when scrap loss is considered, thronghput may eventually decrease in
the WIP level—something that our cases in Chapter 7 did not allow.

Because manufacturing systems are complex and diverse, some systems undoubt-
edly exhibit types of behavior that we have not described in this book. Indeed, as we
write this, considerable research is being devoted to describing many different produc-
tion systems (see Askin and Standridge 1993; Buzacott and Shanthikumar 1993; and
Graves, Rinnooy Kan, and Zipkin 1993 for good, up-to-date summaries). Thus, in the
next few years, we can expect the range and depth of factory physics to expand signif-
icantly. Although advances in manufacturing science will never enable manufacturing
management to become merely an analytical exercise, our hope is that it will become
more like medicine (i.e., science-based, with a strong human element) and less like
fashion (i.e., trendy, without guiding principles).

2. Factory physics is « pedagogical framework for conveying;

a. Basics

b. Intuition

e. Synthesis
To give precise descriptions of factory behavior under various conditions, we need appro-
priate tools (e.g., statistics, queueing theory, reliability). Ina factory physics framework,
therefore, these become important not just for their own sake, but as building blocks for
answering fundamental questions about how plants behave.

We have repeatedly stressed that sound intuition is perhaps the singie most important
skill of the manufacturing manager, enabling him or her to focus attention on the areas
of greatest leverage. By describing the natural tendencies of manafacturing systems,
factory physics provides a structure within which to build intuition. The manager who
understands factory physics principles and can interpret empirical observations in terms
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of them will acquire insight into the behavior of a system far more rapidly than a manager
without these skills.

We have also stressed that manufactaring systems are complex, multifaceted or-
ganizations involving many different processes, people, and machines, and mulitiple
objectives. In such environments, the major opportunities for improvements often lie at
the interfaces (e.g., between sales and manufacturing, or between product development
and manufacturing). By providing a general description of the manufacturing system,
factory physics gives us a means for evaluating the impacts of external changes on plant
behavior. As such, it represents a linking mechanism between manufacturing and other
business functions.

3. Factory physics is a link berween the process and systems views of manufactur-
ing. Manufacturing specialists tend to come in two varieties. One group focuses on
the specific processes involved in manufacturing, such as robotics, surface finishing,
grinding, injection molding. The other group (to which the authors belong) focuses on
systems, such as scheduling, inventery control, production planning. Clearly, both sets
of concerns are critical to effective operation of a plant. Unfortunately, members of
each group are inclined to act as if their view of manufacturing were the only “correct”
one. As a result, processes are chosen with little regard for systems impact, and sys-
tems are designed with little detailed consideration of processes. Factory physics uses
process-oriented descriptors (e.g., mean time to failure, mean time to repair, setup time),
condensed into logistics-oriented descriptors (e.g., mean and SCV of effective process-
ing times), to estimate systems-oriented measures (throughput, WIP, cycle time). Thus,
it provides a means for interpreting process changes in systems terms.

4. Factory physics is a collection of tools for quantifying tradeoffs. As we have seen,
increasing capacity, reducing scrap, improving reliability and maintainability, reducing
or externalizing setups, upgrading the quality of purchased parts, more frequent moves
of smaller batches, and many other policies can have related logistical impacts. By
combining the factory physics tools for evaluating these effects with estimates of costs,
we can examine the relative aitractiveness of each. Moreover, by using the plant-level
measures provided by factory physics under different configurations, we can generate
cost versus performance curves (e.g., throughput versus cost or cycle time versus cost)
and determine strategically desirable targets.

Finally, from an impact standpoint, it is difficult to overstate the importance of
factory physics. Roughly one-half of the U.S. economy (jobs, as well as GNP) still
depends on manufacturing. Indeed, operational improvements in the manufacturing
sector were instrumental in the productivity gains that drove the economic boom of the
1990s. But as competitiveness in the world of manufacturing continues to escalate, the
ability to deliver diverse products with high quality, low cost, swift delivery, and reliable
service is fast evolving from a recipe for success to a requirement for survival. In the
past it was possible to develop effective manufacturing practices by trial and error. In the
future there won’t be time. Only by sustaining a rapid cycle of continual improvement
through the use of principles to quickly develop practices that support strategy will firms
be able to keep pace. In the 21st century, mastery of the concepts of factory physics will
be as vital a core manufacturing competency as the concepts of mass production were
in the 20th century.



Soofc oofRs Soooo

T r - o F F 1 -} § 3§

enwa - D (=L B et b A et R B 1} nflerd L b bk il b= Ea] P - T ¥ Tl = L el dul ek 3 g —
93582 3385% 2803% RRRUP gde-- osten SEEGd gutoe ReRcS BEESE 3E950 39857 I3%E 1Y
[=1-1-1=1=] f=1=1=1-1-] odods Coonse oodsd

Sooon caoos daSos

o —  wn—foon— === WTNSE m3003 2m43 AU = Sh 3@ —~ sm me.u..j - 63% mmﬂll gmﬂ.m.ﬁ_ gmsmw
R~ b+ L]l R WP e W = £ g = b ol Il i = [ bt - il [~ o
5| 2883 3838 85:77 Sgoaf cEtor Eunmd CERGR BE23% “ERES DEEER goosr 22y 3fend a3
e doe eemon ocooso cooon Soddd doadde ooaod Soode codme Soooo ooddd odddd oosoo cSo o
- —f Y x] — - g [l o ~— - - - Daplorle =g 2] - - Ll — ] o
<| 2387 Sofsp ESIE QGERE RORY BIAS Mioer OS9F DRME fofss dasit S3RSR MEsE RS
Coeat ooooC CcoSod SaDos Soedo T=¥=1 LSS o e Sdooo coodos oovog Oogdo agoao P=1=1=1-1-}
™ -— o L — -] 2 Bl Eelni] NG - —h- gy [ Lt el [ 2T e k] — Lat o0 eyt =1 -3
= LHFFE ZE3NE NegE SREs R8RS 31% ZESEE paARNE ~FIT NMWE“ QM? 2 %m = mmmmm
o| E3855 29933 §RO%E fORRd DEMAY ANARG 1UGSS JORED BATED Ziiss Sunwr Gomiy f538% B35
Sogodm SoooS owQoo ocoCos SSoos DooDd =T == moCoa SodSon oddog SooOmo cCoooD oDQoo [=1-1-1-1-]

o el D] ———T ey v (3 | nf o W = b i el = | =Toal - L+ Dol — =] W o g - bt [al=:b al -~ Lr] Lind il ] il
o emoowm megur gm@cw goondt B8ES9 § ShgsR 23850 DOURE BETST IG5 LN BB

_ 3| BBE%; hEEl ate 32957 IEERY PHRSE SBEYY Zadaf theel yueld S3ERC £3525 22938 %
a S2SZ22 SESEs ZSois Sooca Sooos Dooos Soddd 99098 STO0o cormoe dooos dooos Socoo Sdodo
e E T - ¢ F F §F §F }-} }

= Tt w mmm m F=tort) DU.N.U% SLEnS TEARS Tikn I% SReld P i og oy w.. o dhan LEERZ S W
Sodos coond Sdocm oooss SoodT 99904 SoSoo 99soo mocoe Soscs ooooo ocddo oddoo o0oln
- mmmmu CARIE ESERL S3ghy gaons mmmmw RS gecun SagEo wmmmm mumﬁm usmw mxm%u Wmmmm
3| §885: SEEF B3ITh B3uuZ DEooT R8Rhs orcus SRRCE TRAAE 2amsh S3afs Beinf 8REEE G2
Geenn odoon CDoobs oooSd coSed doaos Sosoos sSosod oOoSSS wessd SoSoo ooogs ooooo SO0
Eral alnad* dlap | Ll ] = L L i "L ] s i A4 Ll 4] 0 e o ——r EWIDRGNS AT moh 90 A% AL R I e i g

- T =nd m b hop e Swmm lmsmw ms m mjﬂln.. Er=CR o = iz %MM% m-) e m

=| sEees Zogae ERns EEder e GERRT DRERY ISiee TAGRT SEEIS L4%ks Ganed fndes EAE
Soche SSodc coocd oooSos oogoo 4odas ogoos d9ecT Soosa Socon Sodcs ooses doddd ocSaso

Entry is area ¥ (z) under the standard normal curve from —ec to z.

999

| 59 | 995 ]
2054 ] 2326 \ 2576 ] 3090

98

915 |

oo |

95 |
1 1645

o0

1.282

Selected Percentiles

|
|

i

T 3nons sanan TO0RS o33 3T 3939 39993 35993 33533 33 I QTN WA A

TasLE Cumulative Probabilities of the Standard Normal Distribution

Cutnulative probability ®(z2):

- el R, my M aw e N - ——e ., - - ———

e l———— M Tt il . ﬂ? f " X



L}

672

Ackoff, R, L. 1956. “The Development of Operations Research as a Science.” Operations
Research 4: 236.

Aggarwal, §. C. 1985. “MRP, ITT, OPT, FMS? Making Sense of Production Operations
Systems,” Harvard Business Review, September-October, pp. 8-16.

Anderson, I., R. Schroeder, S. Tupy, and E. White. 1982, “Material Requirements Planning
Systems: The State-of-the-Art,” Production and Inveniory Management 23(4): 51-67.

Arguello, M. 1994. “Review of Scheduling Software,” Technology Transfer 93091822A-XFR,
SEMATECH, Austin, TX.

Askin, R. G., and C. R. Standridge. 1993, Modeling ard Analysis of Manufacturing Systems.
New York: Wiley.

A. W. Shaw Company. 1915. The Library of Factory Management, vols. 1-5. Chicago: A. W,
Shaw.

Axsiiter, S. 1993, “Continuous Review Policies for Multi-Level Inventory Systems with
Stochastic Demand,” in Handbooks in Operations Research and Managemens Science, vol.
4: Logistics of Production and Inventory. 5. C. Graves, A. H, G. Rinnooy Kan, and P- H.
Zipkin (eds.). New York: North-Holland.

Babbage, C. 1832. On the Economy of Machinery and Manufactures. London: Charles Knight.
Reprint, Augustus M. Kelley, New York, 1963,

Bahl, H. C., L. P. Ritzman, and J. N. D. Gupta. 1987. “Determining Lot Sizes and Resource
Requirements: A Review,” Operations Research 35(3): 329-345.

Baker, K. R. 1993. “Requirements Planning,” in Handbooks in Operations Research and
Management Science, vol 4: Logistics of Production and Inventory, 8. C. Graves, A. H. G.
Rinnooy Kan, and P. H. Zipkin (eds.}. New York: North-Holland.

Baker, W. M. 1994. “Understanding Activity-Based Costing,” Industrial Management,
March/April, 36: 28-30.

Bamnard, C. 1. 1938. The Functions of the Executive, Camnbridge, MA: Harvard University Press.

Bames, R. 1937. Motion and Time Study. New York: Wiley.

Bartholdi, J. J., and D. D. Eisenstein. 1996, “A Production Line that Balances Tiself,” Operations
Resarch 44(1): 21-34.

Baumol, W. I, $. Blackman, and E. N. Wolff. 1989. Productivity and American Leadership: The
Long View. Cambridge, MA: MIT Press.

Bazaraa, M. S., and C. M. Shetty, 1979. Nonlinear Programming: Theory and Algorithms. New
York: Wiley.

Benjaafar, S., and M. Sheikhzadeh. 1997. “Scheduling Policies, Batch Sizes, and Manufacturing
Lead Times,” [IE Transactions 29(2): 159-166.

Blackburn, J. D. (ed.). 1991, Time-Based Competition: The Nexi Battleground in American
Manufacturing. Homewood, IL: Irwin. -



T

i e gy N, o A T O, A gt T e, -

L

%

e, T

References 673

Blackstone, J. H., Jr., D. T. Phillips, and G. L. Hogg. 1982. “A State-of-the-art Survey of
Dispatching Rules for Manufacturing Job Shop Operations,” International Journal of
Production Research 20(1). 27-45.

Bonneville, J. H. 1925, Elements of Business Finarce. Englewood Cliffs, NI: Prentice-Hall.

Boorstein, D. 1. 1958. The Americans: The Colonial Experience. New York: Random House.

— 1965, The Americans: The National Experience, Mew York: Random House.

. 1973, The Americans: The Democratic Experience. New York: Random House.

Boudette, N. 1999. “Europe’s SAP Scrambles to Stem Big Glitches—Software Giant (o Tighten
Tts Watch After Snafus at Whirlpool, Hershey,” The Wail Street Journal, Nov 4.

Bourland, K. 1992. “Spartan Industries,” Case Study, Amos Tuck School, Dartmouth College.

Box, G. E. P, and G. M. Jenkins. 1970. Time Series Analysis, Forecasting and Control. San
Francisco: Holden-Day.

Bradt, L. J. 1983. “The Automated Factory: Myth or Reality,” Engineering: Cornell Quarterly
3(13).

Brown, R. G. 1967. Decision Rules for Inventory Management. New York: Holt, Ringhart and
Winston.

Browne, 1., J. Hathen, and 1. Shivnan, 1988, Production Managemens Systems. Reading, MA:
Addison-Wesley.

Bryant, K. L., and H. C. Dethloff. 1990. A History of American Business. Englewood Cliffs, NJ;
Prentice-Hall.

Buzacott, . A., and J. G. Shanthikumar. 1993. Stochastic Models of Manufacturing Systems.
Englewoed Cliffs, NJ: Prentice-Hall,

Carlier, J., and E. Pinson. 1988. “An Algorithm for Solving the Job-Shop Problem,” Management
Science 35: 164-176.

Camegie, A, 1920. Autobiography of Andrew Camegie. Boston: Houghton Mifflin.

Cerveny, R, P, and L, W. Scott. 1989. “A Survey of MRP Implementation,” Production and
Inventory Management 30(3): 31-34.

Chandler, Alfred D., Jr. 1977. The Visible Hand: The Managerial Revolution in American
Business. Cambridge, MA: Belknap Press.

—___. 1984 “The Emergence of Managerial Capitalism,” Business History Review 58: 473-503.

—-1990. Scale and Scope: The Dynamics of Industrial Capitalism. Cambridge, MA:
Harvard University Press.

Chandler, Alfred D., and S. Salsbury, 1971. Pierre S. Du Font and the Muking of the Modern
Corporation. New York: Harper & Row.

Charney, C. 1991. Time 1o Market: Reducing Product Lead Time. Dearborn, MI: Society of
Manufacturing Engineers.

Cherington, P. T. 1920. The Elernents of Marketing. New York: Macmilian.

Churchman, C. W. 1968. The Systems Approach. New York: Dell.

Clark, A., and H. Scarf. 1960. “Optimal Policies for a Multi-Echelon Inventory Problem,”
Management Science 36: 13291338,

Clark, K. B., R. H. Hayes, and C. Lorenz. 1985. The Uneasy Alliance: Managing the

, Productivity-Technology Dilemma. Boston; Harvard Business School Press.

Cohen, M. A., Y. 8. Zheng, and V. Agrawal. 1994. “Service Panis Logistics Benchmark Study.”
Working paper, Wharton School, University of Pennsylvania, Philadelphia.

Cohen, 5. 8., and 1. Zysman. 1987. Manufacturing Matters: The Myth of the Post-Industrial
Economy. New York: Basic Books.

Consiglio, M. 1969. “Leonardo da Vinci: The First IR?” Induserial Engineering 1: 71.

Copley, F. B. 1923. Frederick W. Taylor: Father of Scientific Management, New York: Harper
and Brothers.

Cray, E. 1979. Chrome Colossus: General Motors and Its Times. New York: McGraw-Hill.

Crosby, P. B. 1979. Quality Is Free: The Art of Making Quality Certain. New York: McGraw-Hill,

. 1984, Quality Without Tears: The Art of Hassle-Free Munagement. New York:
McGraw-Hill.

Daskin, M. §. 1995. Network and Discrete Location. New York: Wiley.




e penn

[T R N TR EO o e 1

674

References

Davidson, K. M. 1920, “Do Megamergers Make Sense?” in Mergers. Acquisitions and
Leveraged Buyouts, R. L. Kuhn (ed.) Homewood, IL: Irwin.

de Kok, T. 1993. “Back-Order Lead Time Behavior in (8,Q)-Inventory Models with Compound
Renewal Demand.” Working paper, School of Technology Management, Eindhoven
University of Technology, Eindhoven, The Netherlands.

Deleersuyder, J. L., T. J. Hodgson, R. E. King, P. J. O"Grady, and A. Savva. 1992, “Integrating
Kanban Type Pull Systems and MRP Type Push Systems: Insights from a Markovian
Model,” HE Transactions 24(3): 43-56,

Deming, W. E. 1950a. Some Theory of Sampling. New York: Wiley.

. 1950b. Elementary Principles of the Statistical Control of Quality. Tokyo: Union of

Japanese Science and Engineering.

. 1960. Sample Design in Business Research. New York: Wiley.

. 1982. Quality Productiviry and Competitive Position. Cambridge, MA: Massachusetts

[astitute of Technelogy, Center for Advanced Engineering Study.

. 1986. Cut of the Crisis. Cambridge, MA: MIT Press.

Dertouzos, M. L., R. K. Lester, and R. M. Solow. 1989. Made in America: Regaining the
Productive Edge. Cambridge, MA: MIT Press.

Deuermeyer, B. 1994, Interofficc Memorandum on Uadergraduate Curriculum in Industrial
Engineering, Texas A&M University.

Deuermeyer, B., and L. B. Schwarz. 1981, “A Model for the Analysis of System Service Level in
Warehouse/Retailer Distribution Systems: The Identical Retailer Case.” In: Mulfi-Level
Production/inventory Contral Systems: Theory and Practice. L. B. Schwarz (ed.).
Amsterdam: North-Holland, 163-193.

DeVor, R., T. Chang, and J. Sutherland. 1992, Statistical Quality Design and Control:
Contemporary Concepts and Methods. New York: Macmillan.

Drucker, B F. 1954. The Practice of Management. New York: Harper & Row.

Dudek, R. A, S. S. Panwalkar, and M. L. Smith. 1992. “The Lessons of Flowshop Scheduling
Research,” Operations Research 40(1): 7-13.

Duncan, W, I. 1989, Great Ideas in Management: Lessons from the Founders and Foundations of
Managerial Practice. San Francisco: Jossey-Bass Publishers.

Edmondson, G., and A. Reinhardt. 1997. “Silicon Valley on the Rhine,” Business Week,
November 3, 162-166.

Einstein, A. 1950, Quoted by Lincoln Bamett, “The Meaning of Einstein's New Theory,” Life,
January 9, 22.

Emerson, H. P, and D. C. E. Naehring. 1984. Origins of Industrial Engineering. Norcross, GA:
Institute of Industrial Engineers.

Erlenkotter, D. 1989. “An Early Classic Misplaced: Ford W. Harris’s Economic Order Quantity
Model of 1915, Management Science 35(7): 898-900.

—  1990. “Ford Whitman Harris and the Economic Order Quantity Model,” Operations
Research 38(6). 937-946.

Fayol, H. 1916. Administration industrielle et générale, Paris: Dunod. In English, General and
Industrial Management. (Constance Storrs, trans.) London: Sir Isaac Pitman and Sons,
1949.

Federgruen, A. 1993. “Centralized Planning Models for Multi-Echelon Inventory Systems under
Uncertainty.” In Handbooks in Operations Research and Management Science, vol. 4:
Logistics of Production and Inventory, S. C. Graves, A. H. G. Rinnooy Kan, and P. H.
Zipkin (eds.). New York: Nerth-Holland.

Federgruen, A., and Y. Zheng. 1992. “The Joint Replenishment Problem with General Joint Cost
Structures,” Operations Research 40: 384—403.

——and 19972, “An Efficient Algorithm for Computing an Optimal (. 0} Policy in
Continuous Review Stochastic Inventory Systems,” Operations Research 4i: 808-813.

Federgruen, A., and P. Zipkin. 1984, “Computational Issues in an Infinite Horizon,
Multi-Echelon Inventory Maodel,” Operations Research 32: 318-836.

Feigenbaum, A. V. 1956. “Total Quality Control,” Harvard Business Review, November.

. 1961. Total Quality Control: Engineering and Management. New York: McGraw-Hill.




e

e

e TETE R

JRS—

kg, e AT

L gy ey v S e e i TR A e o g

References 675

Feitzinger, E., and H. L. Lee. 1997. “Mass Customization at Hewleti-Packard: The Power of
Postponement.” Harvard Business Review, January-February, 116-121,

Fish, J. C. L. 1915, Engineering Econontics: First Principles. New York: McGraw-Hill.

Fisher, M. L. 1997. “What Is the Right Supply Chain for Your Product?” Harvard Business
Review, March-April, 105-116.

Flink, I. J. 1970, America Adopts the Automobile, 1895-1910. Cambridge, MA: MIT Press.

Follett, M. P. 1942, Dynamic Administration: The Collected Papers of Mary Parker Follett. H. C.
Metcalf, and L. Urwick (eds.}. New York: Harper.

Ford, H. 1926. Today and Tomorrow. New York: Doubleday. Reprint, Productivity Press, 1988,

Fordyce, J. M, and F. M. Webster. 1984, “The Wagner-Whitin Algorithm Made Simple.”
Production and Inventory Management 25(2): 21-30.

Forrester, 1. 1961. Industrial Dynamics. New York: MIT Press and Wiley.

Fourer, R., . M. Gay, and B.W. Kernighan, 1993. AMPL: A Modeling Language for
Mathematical Programming. San Francisco: Scientific Press.

Fox, R. E. 1980. “Keys to Successful Materials Management Systems: A Contrast Between
Japan, Europe and the U.8.” 23rd Annual Conference Proceedings, APICS, 440—444.

Freidenfelds, J. 1981. Capacity Extension: Simple Models and Applications. Amsierdam:
North-Holland.

Galbraith, J. K. 1958. The Affluent Sociery. Boston: Houghton Mifflin,

Garvin, D. 1988. Managing Quality: The Strategic and Competitive Edge. New York: Free Press.

Gilbreth, F. B. t1911. Motion Study. New York: Van Nostrand.

Gilbreth, E. B., and E. G. Gilbreth Carey, 1949. Cheaper by the Dozen. New York: T. Y. Crowell.

Gilbreth, L. M. 1914, The Psychology of Management. New York: Sturgis and Walton. Reprinted
in W. R. Spriegel, and C. E. Myers {eds.). The Writings of the Gilbreths. Homewood IL:
Irwin, 1953.

Glover, F. 1990, “Tabu Search: A Tutoral.” Interfaces 20(4); 79-94.

Goldratt, E. M., and J. Cox. 1984, The Goal: A Process of Ongoing Improvement.
Croton-on-the-Hudson, N'Y: North River Press.

Goldratt, E. M., and R. E. Fox. 1986. The Race. Croton-on-the-Hudson, NY: North River Press.

Gordon, R. A., and J. E, Howell. 1959, Higher Education for Business. New York: Columbia
University Press.

Gould, L. 1985, “Computers Run the Factory.” Electronics Week, March 25.

Grant, E. L. 1930, Principles of Engineering Economy. New York: Ronald Press.

Grant, E. L., and R. Leavenworth. 1946. Statistical Quality Control. Milwaukee, WE American
Society for Quality Control.

Graves, 8. C., A. H, G. Rinnooy Kan, and P. H. Zipkin {eds.). 1993. Handbooks in Operations
Research and Management Science, vol. 4: Logistics of Production and Inventory. New
York: North-Holland.

Gross, D)., and C. Hayris. 1985, Fundamentals of Queueing Theory. 2d ed. New York: Wiley.

Hackman, 8. T., and R.C. Leachman. 1989. “A General Framework for Modeling Production,”
Management Science 35(4): 478-495,

Hadley, G., and T. M. Whitin. 1963. Analysis of Inventory Systems. Englewood Cliffs, NI:
Prentice-Hall.

Hall, R. W. 1981. Driving the Productivity Machine: Production Planning and Control in Japan.
Falls Church, VA: American Production and Inventory Control Society, Inc.

1083, Zero Inventaries. Homewood, IL: Dow Jones-Irwin.

Hammer, M., and J. Champy. 1993. Reengineering the Corporation. New York: HarperCollins.

Hards, E W, 1913. “How Many Parts to Make at Once.” Factory: The Magazine of Management
10¢2): 135-136, 152. Also reprinted in Operations Research 38(6). 947-950, 1990,

Hausman, W, H., and N. K. Erkip. 1994, “Multi-Echelon vs. Single-Echelon Inventory Control
Policies for Low-Demand Items.” Management Science 40: 597-602.

Hax, A. €., and D. Candea. 1984, Production and Inventory Management. Englewood Cliffs, NI:
Prentice-Hall.

Hayes, R. 1981. “Why Japanese Factorics Work.” Harvard Business Review, July-August, pp.
57-66.



g

T S

676

References

Hayes, R., and 8. Wheelwright. 1984 Restoring Our Competitive Edge: Competing through
Manufacturing. New York: Wiley.

Hayes, R., S. Wheelwright, and K. Clark. 1988. Dynamic Manufacturing: Creating the Learning
Organization, New York: Free Press.

Hitomi, K. 1979. Manufacturing Systems Engineering. London: Taylor and Francis.

Hodge, A. C., and ], O. McKinsey, 1921. Principles of Accounting. Chicago: University of
Chicago Press.

Hopp, W. 1., and M. L. Roof. 1998, “Quoting Manufacturing Due Dates Subject to a Service
Level Constraint,” Technical Report, Department of Industrial Engineering, Northwestern
University, Evanston, IL.

Hopp, W. J., and M. L. Spearman. 1991. “Throughput of a Constant Work in Process
Manufacturing Line Subject 1o Failures.” International Jowrnal of Production Research
29(3): 635-655.

Hopp, W. 1., and M. L. Spearman. 1993. “Setting Safety Leadtimes for Purchased Components
in Assembly Systems.” HE Transactions 25(2); 2-11.

Hopp, W. I., and M. L. Spearman, and I. Duenyas. 1993. “Economic Production Quotas for Pull
Manufacturing Systems.” HE Transactions 25(2): 7179,

Hopp, W. 1., and M. L. Spearman, and D. L. Woodruff. 1990. “‘Practical Strategies for Lead Time
Reduction.” Manufacturing Review X2): 78-84.

Industrial Engineering. 1991. “Competition in Manufacturing Leads to MRP I1.” Industrial
Engineering, 23(7) 10-13.

Inman, R. A., and S. Mehra, 1990. “The Transferability of Just-in-Time Concepts to American
Small Businesses.” Interfuces 20: 30-37, March-April.

Inman, R. R. 1993, “Inventory Is the Flower of All Evil."” Production and Inventory
Management Journal 34(4): 41-43.

Jacksen, P. L., W. L. Maxwell, and J. A. Muckstadt. 1985. “The Joint Replenishment Problem
With a Powers of Twao Restriction.” HE Transactions 17: 25-32.

Jacobs, F. R. 1984. “OPT Uncovered: Many Production Planning and Scheduling Concepts Can
Be Appiied With or Without the Software.” Industrial Engineering, October, 32-41.

Iohnson, H, T.. and R. S. Kaplan, 1987, Relevance Lost: The Rise and Fall of Management
Accounting. Cambridge, MA: Harvard Business School Press.

Johnson, L. A., and D. C. Montgomery. 1974, Operations Research in Production Planning,
Scheduling, and Inventory Control. New York: Wiley.

Johnsen, S. M. 1954, “Optimal Two- and Three-Stage Production Schedules with Setup Times
Included” Naval Research Logistics Quarterly 1z 61-68.

Juran, . M. 1964. Managerial Breakthrough. New York: McGraw-Hill.

—— (ed.). 1988, Juran's Quality Control Handbook, 4th ed., EM. Gryna (assoc. ed.). New
York: McGraw-Hill.

—1989. Juran on Leadership for Quality: An Executive Handbook. New York: Free Press.

. 1992. Juran on Quality by Design: The New Steps for Planning Quality into Goods and
Services. New York: Free Press.

Kakar, S. 1970. Frederick Taylor: A Study in Personality and Innovation. Cambridge, MA: MIT
Press.

Kanet, 1. I. 1984. “Inventory Planning at Black & Decker.” Production and Inventory
Management 25(3): 62-74.

— . 198%8. “MRP 96: Time to Rethink Manufacturing Logistics.” Production and Inventory
Management 29(2): 57-61.

Kaplan, R. §. 1986. “Must CiM Be Justified by Faith Alone?" Harvard Business Review,
March-April, 87-95.

Karmarkar, U. S. 1987. “Lot Sizes, Lead Times and In-Process Inventories.” Management
Science 3X3): 409423,

. 1989. “Getting Control of Just-in-Time,” Harvard Business Review, September—October,
122-131.

Kearns, D. T., and D. A. Nadler. 1992, Prophets in the Dark: How Xerox Reinvented Itself and
Beat Back the Japanese. New York: HarperCollins.




T e

T

o

e

T qk g

< et

References 677

Kellermann, A. L., F. P. Rivara, N, B. Rushforth, J, G. Banton, D, T. Reay, J. T. Francisco, A, B.
Locci, 1. Prodzinski, B. B. Hackman, and G. Somes. 1993. “Gun Ownership as a Risk
Factor for Homicide in the Home.”” New England Journal of Medicine, 329(15). 10841091,

Kilbridge, M. D., and L. Wester. 1961. “A Heuristic Method of Assembly Line Balancing,”
Journal of Indusirial Engineering. 12(4}; 292-298.

Klein, J. A, 1989, “The Human Costs of Manufacturing Reform.” Harvard Business Review,
March-April, pp. 60-66.

Kleinrock, L. 1975, Queueing Systems, vol. I: Theory. New York: Wiley,

Krajewski, L. I, B. E. King, L. P. Ritzman, and D. 5. Wong. 1987. “Kanban, MRF, and Shaping
the Manufacturing Environment,” Management Science 33(1): 39-57.

Kuhn, T. 8. 1970. The Structure of Scientific Revalutions. Chicago: University of Chicago
Press.

LaForge, R., and V. Sturr. 1986. “MRP Practices in a Random Sample of Manufacturing Firms,”
Production and Inventory Managemeni 28(3): 129-137.

Lamm, R. D. 1988. “Crisis: The Uncompetitive Socicty.” In Global Competitiveness. M. K. Starr

(ed.). New York: Norton.

Lee, H. L., and C. Billington. 1992, *Managing Supply Chain Inventory: Pitfalls and
Opportunities,” Sloan Management Review 33: 65-73.

— . 1995. “The Evolution of Supply-Chain-Management Models and Practice at
Hewiett-Packard.” Interfaces 25(5): 42-63.

Lee, H. L., C. Billington, and B. Carter. 1993, “Hewlett-Packard Gains Control of Inventory and
Service through Design for Localization.” Interfaces 23(4): 1-20,

Lee, H. L., V. Padmanabhan, and S. Whang. 1997a. “The Bullwhip Effect in Supply Chains.”
Sloan Management Review 38(3): 93-102.

— . 1997b. “Information Distortion in a Supply Chain: The Bullwhip Effect.” Management
Science 43(4); 546-558.

Little, J. D. C. 1992. “Tautologies, Models and Theories: Can We Find ‘Laws’ of
Manufacturing?” IJE Transactions 24: 7-13.

Lough, W. H, 1920. Business Finance. New York: Ronald Press,

Lundrigan, R. 1986. “What's This Thing Called OFT?" Production and Inventory Management
27(2): 2-12.

Maddison, A. 1984. “Comparative Analysis of the Productivity Situation in the Advanced
Capitalist Countries.” In nternationat Comparisons of Pmductivity and Causes of the
Siowdown. J. W. Kendrick (ed.). Cambridge, MA: Ballinger.

Majone, G. 1985, “Systems Analysis: A Genetic Approach.” In Handbook of Systems Analysis:
Overview of Uses, Procedures, Applications, and Practice, chapter 2. Hugh J. Misner and
Edward S. Quade {eds.). New York: Elsevier.

Marion, J. B. 1970. Classical Dynamics of Particles and Systems, 2d ed. New York: Academic
Press, 266,

Martino, J. P. 1983. Technological Forecasting for Decision Making, 2d ed. New York:
North-Holland.

Maslow, A. 1954. Motivation and Personality. New York: Harper.

Mayo, E. 1933, The Human Problems of an Industrial Civilization. New York: Macmillan.

1645, The Social Problems of an Industrial Civilization. Cambridge, MA: Division of
Research, Graduate School of Business Administration, Harvard University.

McClain, J. O., and L. ]. Thomas. 1985. Operations Management: Production of Goods and
Services, 2d ed, Englewood Cliffs, NJ: Prentice-Hall.

McCloskey, I. F. 1987a. “The Beginnings of Operations Research 1934-1941." Operations
Research 35(1): 143-152.

. 1987b. “British Operational Research in World War [L.” Operations Research 38(3).
453—470.

———, 1987c. “U.S. Operations Research in World War IL.” Operations Research 35(6): 910-923.

MecGregor, D. 1960. The Human Side of Enterprise. New York: McGraw-Hill.

Michel, R. 1997, “Reinvention Reigns: ERP Vendors Redefine Value, Planning, and Elevate
Customer Service.” Manufacturing Systems, July, 28,

Il




b

678

References

Micklethwait, J., and A. Wooindge. 1996, The Witch Doctors. New York: Random House.

Miller, J. G., and T. E. Volimann. 1985. “The Hidden Factory.” Harvard Business Review,
September-October, 142-150.

Miser, H. J., and E. 8. Quade (eds.). 1985. Handbook of Systems Analysis: Overview of Uses,
Procedures, Applications, and Practice. New York: North-Holland.

{eds.). 1988. Handbook of Systems Analysis: Craft Issues and Procedural Choices. New
York: North-Holland.

Mitchell, W. N. 1931, Production Management. Chicago: University of Chicago Press.

Monden, Y. 1983, Tovota Production System: Practical Approach to Production Management.
Norcross, GA: Industrial Engineering and Management Press.

Montgomery, D. C. 1991. Introduction to Statissical Quality Control, 2d ed. New York: Wiley.

Morten, T. E., and D. W. Pentico, 1993, Heuristic Scheduling Systems with Applications 1o
Production Svstems and Project Management. New York: Wiley.

Muckstadt, J. A, and L. J. Thomas. 1980. “Are Multi-Echelon Inventory Methods Worth
Implementing in Systems with Low Demand Rates?” Management Science 26: 483-494.

Muhs, W. E., C. D. Wrege, and A. Murtuza. 1981. “Extracts from Chordal’s Letters: Pre-Taylor
Shop Management.” Proceedings of the Academy of Managemeni, 41st annual meeting, San
Diego, CA.

Mumford, L. 1943, Technics and Civitization. New York: Harcourt and Brace.

Munsterberg, H. 1913, Psychology and Industrial Efficiency. Boston: Houghton Mifflin.

Myers, F. §. 1990, “Japan's Henry Ford.” Scienific American 262(5): 98.

Nahmias, $. 1993, Production and Operations Analysis. 2d ed. Homewood, IL: Trwin.

Nahmias, $., and §. Smith. 1992. “Mathematical Models of Retailer Inventory Systems: A
Review.” In Perspectives in Operations Management: Essays in Honor of Elwood S. Buffe.
R. K. Sarin {ed.). Boston: Kluwer. .

Nettemann, D., and L. Smith. 1982. “Just-in-Time” vs. Just-in-Case Production/Inventory
Systems Concepts Borrowed Back from Japan.” Production and Inventory Management,
second quarter, 12-21.

Nelson, D. 1990. Frederick W. Tavior and the Rise of Scientific Management. Madison:
University of Wisconsin Press.

Niebel, B. 1993. Motion and Time Study, 9th ed. Homewood, IL: Irwin.

Ohno, T. 1988. Toyota Production System: Beyond Large-Scale Production, Cambridge, MA:
Productivity Press (translation of Tayota seisan hoshiki, Tokyo: Diamond, 1978}.

Ohno, T., and S. Mito, 1988. Just-in-Time for Today and Tomorrow. Cambridge, MA:
Productivily Press {translation of Naze hitsuyea na mono o hitsuyeo na bun dake hitsuyeo
na toki ni teikyeo shinai no ka, Tokye: Diamond, 1986).

Orlicky, I. 1975 Material Reguirements Planning: The New Way aof Life in Production and
Inventory Management. New York: McGraw-Hill.

Parker, K. 1997. “The Great Trek Begins: Mid-sized Manufacturers Migrate to Client/Server
Enterprise Sysiems,” Manufacturing Systems, January.

Peterson, R., and E. A. Silver. 1985. Decision Systems for Inventory Management and
Production Planning. 2d ed., New York: Wiley.

Pierson, . C., et al. 1959, The Education of American Businessmen. New York: MecGraw-Hill,

Pinedo, M. 1995. Scheduling: Theory, Algorithms, and Systems. Englewood Cliffs, NJ:
Prentice-Hail.

Pinedo, M., and X. Chao. 1999, Operations Scheduling: With Applications in Manufacturing and
Services. Boston: Irwin/McGraw-Hill.

Plossl, G. W. 1985. Production and Inventory Control, 24 ed. Englewood Cliffs, NJ:
Prentice-Hall.

Pollard. H. R. 1974. Developments in Management Thought. London: Heinemann.

Polya, G. 1954. Patterns of Plausible Inference. Princeton, NJ: Princeton University Press.

Popper, K. 1963. Conjectures and Refutations. London: Routledge & Kegan Paul Ltd.

Rao, A, 1989, “A Survey of MRP-II Software Suppliers’ Trends in Support of Just-in-Time.”
Production and Inventory Management, third quarter, 14-17.




n K__-_ [P W, N - - — -

Lmas acvriig sas, R

.

e b B AN

References 679

Ravenscraft, D. ., and F. M. Scherer. 1987. Mergers, Sell-Offs, and Economic Efficiency.
Washington: Brookings Institute.
Raymond, F. E. 1931. Quantity and Economy in Manufacture. New York: McGraw-Hill.
Roderick, L. M., D. T. Phillips. and G. L. Hogg, 1991. “A Comparison of Order Release
Strategies in Production Control Systems.” International Journal of Production Research
30(2): 1991.
Roethlisberger, F. 1., and W. ). Dickson. 1939. Management and the Worker. Cambridge, MA:
Harvard University Press.
Roundy, R. 1985. “98% Effective Integer Ratio Lot-Sizing for One Warehouse Multi-Retailer
Systems.” Management Science 313 1416-1430.
. 1986. “989% Effective Lot-Sizing Rule for Mult-Product, Multi-Stage Production
Inventory Systems.” Mathematics of Operations Research 11 699-727.
Sage, A. P. 1992. Systems Engineering. New York: Wiley.
Sanderson, R. )., J. A. Cambeli, and J. D. Meyer. 1982. Industrial Robots, A Summary and
Forecast for Manufacturing Managers. Lake Geneva, WI: Tech Tran Corporation.
Scherer, E. M., and D. Ross. 1990. Industrial Market Structure and Ecoromic Performance, 3d
ed. Boston: Houghton Mifflin.
Schmenner, R. W. 1993. Production/Operations Management: From the Inside Out, 5th ed. New
York: Macmillhan.
Schonberger, R. J, 1982. Jupanese Manufacturing Technigues: Nine Hidden Lessons in
Simplicity. New York: Free Press.
—_ 1986. World Class Manufacturing: The Lessons of Simplicity Applied. New York: Free
Press.
— . 1990. Building a Chain uf Customers: Linking Business Functions o Create a World
Class Company. New York: Free Press.
Schroeder, R., I. Anderson, S. Tupy, and E. White. 1981. “A Study of MRP Benefits and Costs.”
Journal of Operations Management 2(1} 1-9.
Schumacher, B. G, 1986. On the Origin and Nature of Management. Norman, OK:
Eugnosis.
Schwarz, L. B. (ed.). 1981. Multi-Level Production/Inventory Control Systems: Theory and
Practice. Amsierdam: North-Holland.
1998, “A New Teaching Paradigm: The Information/Control/Buffer Portfolio.”
Production and Qperations Management T(2): 125-131, summer.
Scott, W. D. 1913. Increasing Human Efficiency in Business. New York: Macmillan.
Sethi, K. 8., S. P. Sethi. 1990. “Flexibility in Manufacturing: A Survey,” International Journal of
Flexible Manufacturing Systems 2, 289-328.
Shafritz, J. M., and 1. 8. O1L 1992, Classics af Organization Theory, 3d ed., Pacific Grove, CA:
Brooks/Cole Publishing Company.
Sherbrooke, C. C. 1992, Optimal Inventory Modeling of Systems: Multi-Echelon Techniques.
New York: Wiley.
Shewhart, W. A. 1931, Economic Control of Quality of Manufactured Product. New York: Van
Nostrand.
Shingo, S. 1985. A Revolution in Manufacturing: The SMED System. Cambridge, MA:
Productivity Press.
—__ 1986. Zero Quality Control: Source Inspection and the Poka-Yoke System. Cambridge,
MA: Productivity Press.
. 1989. A Study of the Toyata Production System from an Industrial Engineering
Viewpoinz. Cambridge, MA: Productivity Press.
. 1990. Modern Approaches to Manufacturing Improvemeni: The Shingo System. A.
Robinson (ed.). Cambridge, MA: Productivity Press,
Silver, A., I. Pyke, and R. Peterson. 1998. Inventory Management and Production Planning and
Scheduling. New York: Wiley.
Simchi-Levi, D., P Kaminsky, and E. Simchi-Levi. 1999. Designing and Managing the Supply
Chain: Concepis, Strategies and Cases. Burr Ridge, IL: Irwin/McGraw-Hill.




References

Simons, Jr.. I. V., and W. P. Simpson III. 1997. “An Exposition of Multiple Constraint
Scheduling as Implemented in the Goal System (Formerly Disaster).” Production and
Operations Management 6(1): 3-22.

Singer, C., E. Flomyard, A. Hall, and T. Williams. 1958. A History of Technology. Oxford:
Clarendon Press.

Skinner, W. §969. “Manufaciuring—The Missing Link in Corporate Strategy.” Harvard Business
Review, May/Iune, 156.

— . 1974, “The Focused Factory.” Harvard Business Review, May~Iune, 113-121.

——. 1985. Manufacturing: The Formidable Competirive Weapon. New York: Wiley.

— . 1985b. “The Taming of Lions: How Manufacturing [ eadership Evolved, 1780-1984.” In
K. B. Clark, R. H. Hayes, and C. Lorenz, The Uneasy Alliance: Managing the
Productivity-Technology Dilemma, Boston: Harvard University Press.

——. 1986. “The Productivity Paradox.” Harvard Business Review, July-August, 55-39.

— . 1988. “What Matters to Manufacturing.” Harvard Business Review, January-February,
10-16.

Smith, A. 1776. An Inguiry into the Nature and Causes of the Wealth of Nations. Chicago: Great
Books of the Western World, vol. 39, Encyclopaedia Britannica, 1952.

Spearman, M. L. 1991. “An Analytic Congestion Model for Closed Production Systems with
IFR Processing Times,” Management Science 37(8): 1015-102%.

Spearman, M. L., W.J. Hopp, and D. L. Woodruff. 1989. “A Hierarchical Control Architecture
for CONWIP Production Systems.” Journal of Manufacturing and Operations Management
2: 147-171.

Spearman, M. L., and S. Krockel. 1999, “Baich Sizing 1o Minimize Flow Times in a
Multi-Product System with Significant Changeover Times.” Technical Report. Atlanta:
Georgia Institute of Technology.

Spearman, M. L., D. L. Woodruff, and W. J. Hopp. 1989, “CONWIP: A Pull Alternative to
Kanban.” fnternational Journal of Production Research 28(5): 879894,

Spearman, M. L., and M. A. Zazanis. 1992. “Push and Pull Production Systems: Issues and
Comparisions.” Operations Research 40(3): 521-532.

Spearman, M. L., and R. Q. Zhang. 1999. “Optimal Lead Time Policies.” Management Science
45(2): 290-295.

Spriegel, W. R., and C. E. Myers (eds.). 1953. The Writings of the Gitbreths. Homewood, IL:
Trwin.

Stalk, G.. and T. M. Hout. 1990. Competing Against Time: How Time-Based Competition Is
Reshaping Global Markets. New York: Free Press.

Stedman, C. 1999. “Survey: ERP Costs More Than Measurable ROL” Computerworld, April 5.

Sterman, J. D. 1989. “Modeling Managerial Behavior: Misperceptions of Feedback in a
Dynaamic Decision Making Experiment.” Management Science 35(3): 321-339.

Stover, John, F. 1961. American Railroads. Chicago: University of Chicago Press.

Suri, R. 1998. Quick Response Manufacturing: A Companywide Approach to Reducing
Leadtimes. Portland, OR: Productivity Press.

Suri, R., and S. dc Treville. 1992. *“Time Is Money.” OR/MS Today, October.

. 1993 “Rapid Modeling: The Use of Queueing Models to Support Time-Based
Competitive Manufacturing.” In Operations Research in Production Planning and Control.
G. Eandel, T. Gulledge, and A. Jones (eds.). New York: Springer-Verlag.

Suri, R., J. L. Sanders, and M. Kamanth. 1993. “Performance Evaluation of Production
Neiworks.” In Handbooks in Operations Research and Management Science, vol 4
Logistics of Production and Inventory. 8. C. Graves, A. H. G. Rinnooy Kan, and P. H.
Zipkin (eds.). New York: North-Holland.

Svoronos, A., and P. Zipkin, 1988, “Estimating the Performance of Muiti-Level Inventory
Systems.” Operations Research 36: 57-72,

Tardif, V, 1995. “Detecting Scheduling Infeasibilitics in Mult-Stage, Finite Capacity, Production
Environments” Ph.D. dissertation, Northwestern University, Evanston, IL.

Taft, E. W. 1918. “Formutas for Exact and Approximate Evaluation—Handling Cost of ligs and
Interest Charges of Product Manufactured Included.” The fron Age 101: 1410-1412,




A g i et e g o o e i e e -

P N T

AL .

References 681

Taylor, A. 1997. “How Toyota Defies Gravity.” Fortune, December 8, 100-108.

Taylor, E W, 1903, “Shop Management.” Transactions of the ASME 24; 1337-1480.

. 1911. The Principles of Scientific Management. New York: Harper & Row.,

Thomas, P. R. 1990. Competitiveness Through Total Cycle Time: An Overview for CEQ’s. New
York: McGraw-Hill.

———_1991. Getting Competitive: Middle Managers and the Cycle Time Ethic. New York:
McGraw-Hill.

Thompkins, J. A., and J. A. White. 1984, Facilities Planning. New York: Wiley.

Thompsan, I. R., and J. Koronacki. 1992. Statistical Process Control for Quality. New York:
Chapman & Hall.

Thompson, M. B. 1992, “Why Finite Capacity?” APICS—The Performance Advantage, June,
50-54.

Towne, H. R. 1886. “The Engineer as an Economist.” ASME Transactions 7: 428—432.

Turino, J. 1992. Managing Concurrent Engineering Buying Time to Markei. New York: Van
Nostrand Reinhold.

U.S. Department of Commerce, 1972, Statistical Abstract of the United States. 93d annual
edition, Bureau of the Census.

. 1977, Swatistical Abstract of the United States. Economics and Statistics Administration,
Bureau of the Census, Table 664, 842 and 758,

Ure, A. 1835. The Philosophy of Manufactures: Or an Exposition of the Scientific, Moral and
Commercial Economy of the Factory System of Great Britain. London: Charles Knight.
Reprint, Augustus M. Kelley, New York, 1967,

Urwick, L. 1947, The Elements of Administration. London: Pitman.

Yollmann, T, E., W. L. Berry, and D. C. Whybark. 1992, Manufacturing Planning and Control
Systems, 3d ed., Burr Ridge, IL: Irwin.

Wack, P. 1985. “Scenarios: Uncharted Waters Ahead.” Harvard Business Review,
September-October, 73-89.

Wagner, H. M., and T. M. Whitin, 1958, "Dynamic Version of the Economic Lot Size Madel.”
Management Science 5(1): 89-56.

Waring, $. P. 1991. Taylorism Transformed: Scientific Management Theory Since 19435, Chapel
Hill; University of North Carolina Press.

Wellington, A. M. 1877. The Economic Theory of the Location of Railways. New York: Wiley.

Wheelwright, 8, 1981. “Japan—Where Operations Really Are Strategic.” Harvard Business
Review, July-August, 67-74.
Whiteside, I., and J. Arbose. 1984. “Unsnarling Industrial Production: Why Top Management Is
Starting to Care,” International Maragement, March, 20-26.
Whitin, T. M. 1953. The Theory of Inventory Managenent. Princeton, NJ: Princeton University
Press.
Whitt, W. 1983, “The Queueing Network Analyzer.” Bell System Technology Journal 62(9):
27719-2815,
—— 1993, “Approximating the GI/G/m Queue.” Production and Operations Management,
2(2): 114-161.
Wight, O. 1970. “Input/Output Control: A Real Handie on Lead Time.” Production and
Inventary Management Journal 11(3): 9-31.
———. 1974, Production and Inventory Management in the Computer Age. Boston: Cahners
Books.
— . 1981. MRP II: Unlocking America’s Productivity Potential. Boston: CBI Publishing.
Wilson, B. 1984. Systems: Concepts, Methodologies, and Applications, New York: Wiley.
Wiison, R. H. 1934. “A Scientific Routine for Stock Control.” Harvard Business Review 13(1):
116-128.
Winters, P. 1960. “Forecasting Sales by Exponentially Weighied Moving Averages.”
Management Science 6: 324-342.
Woodruff, D., and M. Spearman. 1992, “Sequencing and Batching for Two Classes of Jobs with
Deadlines and Setup Times,” Journal of Production and Operations Management, 1
g7-102.




ey

T 2T AR A

(R et

682

References

Wrege, C. D., and R. G. Greenwoud. 1991, Frederick W. Taylor—The Father of Scientific
Management: Myth and Reality. Homewood, IL: Irwin.

Wren, D, 1987. The Evolution of Management Thought. 3d ed. New York: Wiley

Yates, R. 1992. “On the Road with the ‘Messiah of Management’ as He Tries to Do for His
Country What He Did for Japan.” Chicugo Tribune, February 16, Section 10, 16.

Zais, A, 1986, “IBM Reigos in Dynamic MRP II Marketplace.” Computerworld, January 27,

Zipkin, P H. 1984, “Inventory Service-Level Measures: Convexity and Approximation,”
Management Science 32: 975-981.

. 1991. “Does Manufacturing Need a JIT Revolution?” Harvard Business Review,
January-February, 40-50.

——. 1999, Foundations of Inventory Management. New York: McGraw-Hill.



P

T gy

i e T T L

ey

i 2"

L

L R . TR

T N N, g e W gy -

i

VTR

A

ABC caw materials classification, 587-588
Absolute variability, 252
Absorption costing, 201-202
Acceptance sampling, 385
Accounting
activity-based costing, 201, 211-212,
615
maodels, 200-204
system, 29
Ackoff, R. L., 192
Activity-based costing, 201, 615
description, 2§1-212
Advanced planning system , 1453, 498-5(1
Advocacy, 372
Advocacy law, 654
Aggregate planning, 137, 434, 438-439,
535
linear programming example, 538-546
product mix planning, 546-557
simple model, 536-538
and workforce planning, 559568
Agile manufacturing, 415, 437
Agrawal, V., 601
Agriculre, 1-2
Aldlocation, 115, 141
Allowable decrease, 544, 574
Allowable increase, 544, 574
Almy, William, 18
Alternative gencration, 193, 648
American Association of Collegiate Schools
of Business, 37
American Customer Satisfaction Index, 381
American Institate of Mining Engineers, 26
American Machinist, 26
American manufacruring
auto industry, 24-25
bust of 1970s-80s, 3840
fnance outlook, 3940

first industrial revolution, 18-20
future of, 4345
golden era, 37-38
inventory s, 173
marketing outlock, 39
mass retailers, 22-23
overview, 15-17
problems in 1970s-80s, 168
professional managers, 40-42
railroads, 21-22
recovery and globalization, 4243
rise of modern organization, 32-37
scientific management, 25-32
second industrial revolution, 20-25
steel industry, 2324
trouble with just-in-time systems,
176-181
trouble with MRP, 173176
trouble with scientific management,
169-173
American Production and Inventory Control
Suciety, 173, 174
American Society of Civil Engineers, 26
American Society of Mechanical Engineers,
26-217
American System, 19-20
Ample capacity case, 238-239
Anders, G., 40
Andersen, Hans Christian, 168
Anderson, I., 174
A posteriori probability, 95
Apple Computer, 615
A priori probability, 95
Arborescent systems, 616
Arbose, J., 174
Arguella, M., 501, 519
Arkwright, Richard, 17, 18
Arrival CV, 262
Arrival rate, 261-262
Arrival variability, 328

Arsenal of Venice, 19
Arthur D. Little Company, 39
Asian crisis, 17
Askan, R. G., 172, 192, 669
Assemble-to-order, 322, 583
Assemblies, 215
Aszsembly lines, 8, 24-25; see alve Facrory
dynamics; Production lines;
Workstations
in CONWIP, 463469
line-of-balance problem. 640, 642-645
paced, 640
zones, 640