智能拖地机器人,云鲸 NARWAL 1 引言(Introduction) 随着制造业水平的不断提高,激光切割和激光焊接技术已在工业界得到广泛应用,并在一些加工领域显示出明显的优越性。除激光切割和激光焊接外,激光表面工程、激光快速成型、激光微处理等技术亦日趋成熟,并逐渐应用于一些特殊的工业加工中。 目前激光加工机器人大多为两轴或三轴的机械手,只能进行简单的加工,而复杂曲面的加工则必须由高性能机器人来完成。针对此种现状,本课题研制了大范围、高精度5轴激光加工机器人,它可以完成复杂曲面的加工。该机器人系统具有如下特点:机器人本体采用高刚度框架式结构,平衡式设计,交流伺服驱动,高精度绝对码盘检测反馈。机器人控制器采用工业级嵌入式CPU,进一步提高控制器的运算能力,缩短控制周期,提高插补精度,保证机器人的检测精度和控制精度。建立了机器人误差模型,解决了机器人系统的误差补偿问题,实现了机器人的高精度加工。 2 总体设计方案(Schemedesi gn) 研制大范围、高精度5轴框架式机器人系统,既要保证系统的先进性,同时又要考虑其实用性和可靠性。由于机器人系统行程的加大,精度的大幅度提高,在机器人的基本结构形式、传动系统的配置方式、关键部件如一体化传动装置、交流伺服电机的选用等方面,均采取了诸多技术措施来达到性能指标的要求。同时对机器人的检测系统和机器人控制系统进行了特殊设计,保证了机器人整体系统的高精度和高性能。 2.1 特殊设计和技术措施 (1)Y轴传动采用双传动型,来减少由于Z轴的倾斜引起的误差; (2)腕部自由度的配置做了较大的改变,解决激光头与A轴同心度带来的误差,并加入了激光头姿态的调整功能; (3)X、Y梁采取了提高刚度的措施,Z梁立柱由2个增加至3个,以提高其刚度系数; (4)X轴、Z轴一体化传动装置的动力桥,采用加长形,由340mm长改为500mm长,提高装置的承载能力,减少变形的影响; (5)Y轴采用弃荷装置,以减小X轴一体化传动装置的负载,同时加大X轴驱动电机的功率; (6)增加了X轴、Y轴一体化传动装置的侧向直线度的整体功能,达到垂直方向的直线度由梁的平面度保证,侧向直线度由调整保证; (7)X梁、Y梁采用严格加工工艺,确保性能稳定和高精度:专做的特种钢管、合理的焊接工艺、人工时效处理、导轨磨床精加工等。 2.2 优化设计 在激光加工机器人的开发过程中,采用SolidEdge进行三维CAD设计,并通过有限元软件进行模拟分析,依据分析结果进行设计修改和优化。由于采用先进的设计手段,确保了机器人本体的优化设计,为提高机器人的整体精度奠定了基础。 3 关键部件的有限元分析(Finiteelementanalysisofkeyparts) 在激光加工机器人的设计过程中,对其关键部件x梁、y梁和z梁支架用软件进行了有限元模拟分析。模拟分析是按照梁在最大承载的位置进行计算,这样可以保证在任何位置都有较高的安全系数。 3.1 模拟分析过程 在模拟分析过程中,对x梁的简化最大,将三维模型转化成二维图形来分析,主要是因为x梁的结构比较简单而且规则,受力情况也比较简单。我们选择的单元类型是BEAM189,这种单元的精度比较高,另外,还引入了截面特性这个参数,所以,我们认为结果的准确性还是值得信任的。这样可以省掉复杂的建模过程,将主要精力用在结果的分析上。 对y梁的分析也采用了简化,但是采用了实体建模,y梁的结构相对比较复杂,而且受力也很复杂,采用的单元是SOLID45,单元的精度适中,考虑到y梁的长度,如果采用复杂的单元并细分网格,可能增加求解的困难,并延长计算的时间。在准确度和效率之间应该有一个合理的分配,采用三维实体模型就可以大大提高精度,所以在单元类型和网格划分的选择上,可以稍微粗糙一些,这样并不降低精度,并且能提高计算效率。 z梁支架是一个很关键的部件,所以,我们在尽量不简化的情况下对其进行了模拟,倒角、连接过渡和螺纹必须要简化掉,否则,这些部位可能增加相当多的单元数,增加计算量,甚至导致求解的失败。 4 机器人误差模型(Roboterrormodel) 4.1 误差补偿方法 在进行机器人误差补偿及标定时,首先要考虑机器人的精度问题。在示教再现作业方式下,操作者移动机器人末端执行器到指定位置,然后通过机器人控制器记录下此时末端执行器的位姿,通常就是电机的码盘值。然后,机器人可以“再现”已经记录的运 动方式和编程顺序。在这种编程方式下,机器人的重复精度是主要的特性参数,现在大多数商品化工业机器人都是以这种方式工作,其重复精度在整个工作空间上都可以达到毫米数量级。因此,就精度问题来说,示教再现方式可以使机器人很好的工作。而对于激光加工机器人来说,它的工作方式不是采用示教再现方式,而是采用离线编程方式,这时机器人的绝对精度成为关键指标。一般而言,机器人的绝对精度要比重复精度低一到两个数量级,在如此低的精度下,机器人是无论如何也不能满足工作需要。造成这种情况的原因主要是机器人控制器根据机器人的运动学模型来确定机器人末端执行器的位置,而这个理论上的模型与实际机器人的物理模型存在一定误差。因此,对机器人运动学模型进行误差补偿进而提高机器人的绝对精度是目前机器人技术领域急需解决的问题。 一般情况下,机器人误差分为几何误差和非几何误差。其中几何误差包括杆件参数误差,理论参考坐标系与实际基准坐标系的误差、关节轴线的不平行度、零位偏差等;非几何因素包括关节和连杆的弹性形变、齿轮间隙、齿轮传动误差、热形变等。如果对机器人的几何误差进行了很好的补偿,绝对精度就可以大大提高,只有对于特定的需要提高绝对精度的应用时才考虑进行非几何误差的补偿。 要提高机器人的绝对精度,可以从两方面入手,一是采用“避免”误差的方法,即针对产生机器人误差的各种误差源,采用高精密加工手段加工机器人各零部件,结合高精密装配技术进行装配。二是采用综合补偿技术,即采用现代的测量手段,对所测得的数据进行分析,辅以适当的补偿算法,对机器人的误差进行补偿以达到减小误差的目的。 由于激光加工机器人的精度要求很高,需要采用多种方法进行误差综合补偿。首先采用“避免”误差的方法。在机器人的结构设计中,采用合理的结构,使机器人的变形尽可能小。在加工制造过程中,关键的部件采用高精度的加工技术和装配工艺。但是该方法对机器人经过运行,产生由于机械磨损、元件性能降低以及构件自身动态特性等因素带来的误差则无能为力。其次通过综合补偿技术来进一步提高机器人精度。即根据实际测量的机器人误差,在机器人模型中引入恰当的补偿算法,来减小机器人的误差,实现改善和提高机器人精度的目的。 4.2 机器人误差模型的建立 运动学模型的选择是决定机器人绝对精度的重要因素之一。它必须正确地对影响机器人末端位姿的各种因素建模。增加运动学模型的复杂度有助于提高机器人的绝对精度,但是也要付出降低机器人性能中其它特性的代价,因此建模时要综合考虑各方面的因素。 激光加工机器人为框架结构的机器人,我们认为采用网格化的误差补偿方法较合适,该方法可以补偿机器人几何误差和某些非几何误差。 根据机器人补偿精度的要求,可以把激光加工机器人工作空间划分为网格。根据不同的补偿精度的要求,网格的疏密程度可以不同。实际的网格划分为14×11×9 5 结论 ( Conclusion) 目前激光加工机器人完成调试,运行结果表明系统完全达到预期指标 。该机器人准备用于汽车大型模具的表面激光处理 ,现在正在进行激光加工处理工艺实验。不远的将来即可达到实用化程度,投入实际使用。 工业工程网 www.chinaie.net |
2020-02-17
2022-06-13
2021-12-13
2022-11-09
2022-10-20